1 |
|
#include <base/tci.hpp> |
2 |
|
|
3 |
|
namespace hmlp |
4 |
|
{ |
5 |
|
|
6 |
|
|
7 |
|
|
8 |
|
Range::Range( int beg, int end, int inc ) |
9 |
|
{ |
10 |
|
info = make_tuple( beg, end, inc ); |
11 |
|
}; |
12 |
|
|
13 |
|
int Range::beg() { return get<0>( info ); }; |
14 |
|
|
15 |
|
int Range::end() { return get<1>( info ); }; |
16 |
|
|
17 |
|
int Range::inc() { return get<2>( info ); }; |
18 |
|
|
19 |
|
void Range::Print( int prefix ) |
20 |
|
{ |
21 |
|
printf( "%2d %5d %5d %5d\n", prefix, beg(), end(), inc() ); |
22 |
|
fflush( stdout ); |
23 |
|
}; |
24 |
|
|
25 |
|
|
26 |
|
|
27 |
|
|
28 |
|
/** @brief Shared-memory lock that calls either pthread or omp mutex.. */ |
29 |
345 |
Lock::Lock() |
30 |
|
{ |
31 |
|
#ifdef USE_PTHREAD_RUNTIME |
32 |
|
if ( pthread_mutex_init( &lock, NULL ) ) |
33 |
|
{ |
34 |
|
printf( "pthread_mutex_init(): cannot initialize locks properly\n" ); |
35 |
|
} |
36 |
|
#else |
37 |
345 |
omp_init_lock( &lock ); |
38 |
|
#endif |
39 |
345 |
}; /** end Lock::Lock() */ |
40 |
|
|
41 |
|
Lock::~Lock() |
42 |
|
{ |
43 |
|
#ifdef USE_PTHREAD_RUNTIME |
44 |
|
if ( pthread_mutex_destroy( &lock ) ) |
45 |
|
{ |
46 |
|
printf( "pthread_mutex_destroy(): cannot destroy locks properly\n" ); |
47 |
|
} |
48 |
|
#else |
49 |
|
omp_destroy_lock( &lock ); |
50 |
|
#endif |
51 |
|
}; /** end Lock::~Lock() */ |
52 |
|
|
53 |
|
void Lock::Acquire() |
54 |
|
{ |
55 |
|
#ifdef USE_PTHREAD_RUNTIME |
56 |
|
if ( pthread_mutex_lock( &lock ) ) |
57 |
|
{ |
58 |
|
printf( "pthread_mutex_lock(): cannot acquire locks properly\n" ); |
59 |
|
} |
60 |
|
#else |
61 |
|
omp_set_lock( &lock ); |
62 |
|
#endif |
63 |
|
}; |
64 |
|
|
65 |
|
void Lock::Release() |
66 |
|
{ |
67 |
|
#ifdef USE_PTHREAD_RUNTIME |
68 |
|
if ( pthread_mutex_unlock( &lock ) ) |
69 |
|
{ |
70 |
|
printf( "pthread_mutex_lock(): cannot release locks properly\n" ); |
71 |
|
} |
72 |
|
#else |
73 |
|
omp_unset_lock( &lock ); |
74 |
|
#endif |
75 |
|
}; |
76 |
|
|
77 |
|
|
78 |
|
|
79 |
|
|
80 |
|
namespace tci |
81 |
|
{ |
82 |
|
|
83 |
|
void Context::Barrier( int size ) |
84 |
|
{ |
85 |
|
/** Early return if there is only one thread. */ |
86 |
|
if ( size < 2 ) return; |
87 |
|
|
88 |
|
//printf( "%2d size %2d Barrier( BEG ) %lu\n", omp_get_thread_num(), size, this ); |
89 |
|
//fflush( stdout ); |
90 |
|
|
91 |
|
|
92 |
|
/** Get my barrier sense. */ |
93 |
|
bool my_sense = barrier_sense; |
94 |
|
/** Check how many threads in the communicator have arrived. */ |
95 |
|
int my_threads_arrived; |
96 |
|
#pragma omp atomic capture |
97 |
|
my_threads_arrived = ++ barrier_threads_arrived; |
98 |
|
|
99 |
|
//printf( "%2d my_threads_arrived %d\n", omp_get_thread_num(), |
100 |
|
// my_threads_arrived ); fflush( stdout ); |
101 |
|
|
102 |
|
/** If I am the last thread to arrive, then reset. */ |
103 |
|
if ( my_threads_arrived == size ) |
104 |
|
{ |
105 |
|
barrier_threads_arrived = 0; |
106 |
|
barrier_sense = !barrier_sense; |
107 |
|
} |
108 |
|
/** Otherwise, wait until barrier_sense is changed. */ |
109 |
|
else |
110 |
|
{ |
111 |
|
volatile bool *listener = &barrier_sense; |
112 |
|
while ( *listener == my_sense ) {} |
113 |
|
} |
114 |
|
|
115 |
|
//printf( "%2d size %2d Barrier( END )\n", omp_get_thread_num(), size ); |
116 |
|
//fflush( stdout ); |
117 |
|
|
118 |
|
}; /** end Context::Barrier() */ |
119 |
|
|
120 |
|
|
121 |
|
|
122 |
|
/** (Default) within OpenMP parallel construct (all threads). */ |
123 |
|
Comm::Comm() |
124 |
|
{ |
125 |
|
/** Assign all threads to the communicator. */ |
126 |
|
size = omp_get_num_threads(); |
127 |
|
/** Assign my rank (tid) in the communicator. */ |
128 |
|
rank = omp_get_thread_num(); |
129 |
|
}; /** end Comm::Comm() */ |
130 |
|
|
131 |
|
Comm::Comm( Context* context ) : Comm::Comm() |
132 |
|
{ |
133 |
|
/** Assign the shared context. */ |
134 |
|
this->context = context; |
135 |
|
}; /** end Comm::Comm() */ |
136 |
|
|
137 |
|
Comm::Comm( Comm* parent, Context* context, int assigned_size, int assigned_rank ) |
138 |
|
{ |
139 |
|
/** Use the assigned size as my size. */ |
140 |
|
size = assigned_size; |
141 |
|
/** Use the assigned rank as my rank. */ |
142 |
|
rank = assigned_rank; |
143 |
|
/** Assign the shared context. */ |
144 |
|
this->context = context; |
145 |
|
/** Assign the parent communicator pointer. */ |
146 |
|
this->parent = parent; |
147 |
|
}; /** end Comm::Comm() */ |
148 |
|
|
149 |
|
Comm Comm::Split( int num_splits ) |
150 |
|
{ |
151 |
|
/** Early return if possible. */ |
152 |
|
if ( num_splits == 1 || size <= 1 ) return Comm( this, context, size, rank ); |
153 |
|
/** Prepare to create gang_size subcommunicators. */ |
154 |
|
gang_size = num_splits; |
155 |
|
/** |
156 |
|
* By default, we split threads evenly using "close" affinity. |
157 |
|
* Threads with the same color will be in the same subcomm. |
158 |
|
* |
159 |
|
* example: (num_splits=2) |
160 |
|
* |
161 |
|
* rank 0 1 2 3 4 5 6 7 |
162 |
|
* color 0 0 0 0 1 1 1 1 (gang_rank) |
163 |
|
* first 0 0 0 0 4 4 4 4 |
164 |
|
* last 4 4 4 4 8 8 8 8 |
165 |
|
* child_rank 0 1 2 3 0 1 2 3 |
166 |
|
* 4 4 4 4 4 4 4 4 (child_size) |
167 |
|
*/ |
168 |
|
size_t color = ( num_splits * rank ) / size; |
169 |
|
size_t first = ( ( color + 0 ) * size ) / num_splits; |
170 |
|
size_t last = ( ( color + 1 ) * size ) / num_splits; |
171 |
|
size_t child_rank = rank - first; |
172 |
|
size_t child_size = last - first; |
173 |
|
/** Use color to be the gang_rank. */ |
174 |
|
gang_rank = color; |
175 |
|
/** Create new contexts. */ |
176 |
|
Context** child_contexts; |
177 |
|
if ( Master() ) child_contexts = new Context*[ num_splits ]; |
178 |
|
/** Master bcast its buffer. */ |
179 |
|
Bcast( child_contexts, 0 ); |
180 |
|
/** The master of each gang will allocate the new context. */ |
181 |
|
if ( child_rank == 0 ) child_contexts[ color ] = new Context(); |
182 |
|
Barrier(); |
183 |
|
/** Create and return the subcommunicator. */ |
184 |
|
Comm child_comm( this, child_contexts[ color ], child_size, child_rank ); |
185 |
|
Barrier(); |
186 |
|
if ( Master() ) delete child_contexts; |
187 |
|
return child_comm; |
188 |
|
}; /** end Comm::Split() */ |
189 |
|
|
190 |
|
|
191 |
|
bool Comm::Master() { return rank == 0; }; |
192 |
|
|
193 |
|
void Comm::Barrier() { context->Barrier( size ); }; |
194 |
|
|
195 |
|
void Comm::Send( void** sent_object ) { context->buffer = *sent_object; }; |
196 |
|
|
197 |
|
void Comm::Recv( void** recv_object ) { *recv_object = context->buffer; }; |
198 |
|
|
199 |
|
void Comm::Create1DLocks( int n ) |
200 |
|
{ |
201 |
|
if ( Master() ) |
202 |
|
{ |
203 |
|
lock1d = new vector<Lock>( n ); |
204 |
|
} |
205 |
|
Bcast( lock1d, 0 ); |
206 |
|
}; |
207 |
|
|
208 |
|
void Comm::Destroy1DLocks() |
209 |
|
{ |
210 |
|
Barrier(); |
211 |
|
if ( Master() ) delete lock1d; |
212 |
|
}; |
213 |
|
|
214 |
|
void Comm::Create2DLocks( int m, int n ) |
215 |
|
{ |
216 |
|
if ( Master() ) |
217 |
|
{ |
218 |
|
lock2d = new vector<vector<Lock>>( m ); |
219 |
|
for ( int i = 0; i < m; i ++ ) (*lock2d)[ i ].resize( n ); |
220 |
|
} |
221 |
|
Bcast( lock2d, 0 ); |
222 |
|
}; |
223 |
|
|
224 |
|
|
225 |
|
void Comm::Destroy2DLocks() |
226 |
|
{ |
227 |
|
Barrier(); |
228 |
|
if ( Master() ) delete lock2d; |
229 |
|
}; |
230 |
|
|
231 |
|
void Comm::Acquire1DLocks( int j ) |
232 |
|
{ |
233 |
|
if ( lock1d ) |
234 |
|
{ |
235 |
|
auto n = lock1d->size(); |
236 |
|
(*lock1d)[ j % n ].Acquire(); |
237 |
|
} |
238 |
|
else if ( parent ) parent->Acquire1DLocks( j ); |
239 |
|
}; |
240 |
|
|
241 |
|
void Comm::Release1DLocks( int j ) |
242 |
|
{ |
243 |
|
if ( lock1d ) |
244 |
|
{ |
245 |
|
auto n = lock1d->size(); |
246 |
|
(*lock1d)[ j % n ].Release(); |
247 |
|
} |
248 |
|
else if ( parent ) parent->Release1DLocks( j ); |
249 |
|
}; |
250 |
|
|
251 |
|
void Comm::Acquire2DLocks( int i, int j ) |
252 |
|
{ |
253 |
|
if ( lock2d ) |
254 |
|
{ |
255 |
|
auto m = (*lock2d).size(); |
256 |
|
auto n = (*lock2d)[ 0 ].size(); |
257 |
|
(*lock2d)[ i % m ][ j % n ].Acquire(); |
258 |
|
} |
259 |
|
else if ( parent ) parent->Acquire2DLocks( i, j ); |
260 |
|
}; |
261 |
|
|
262 |
|
void Comm::Release2DLocks( int i, int j ) |
263 |
|
{ |
264 |
|
if ( lock2d ) |
265 |
|
{ |
266 |
|
auto m = (*lock2d).size(); |
267 |
|
auto n = (*lock2d)[ 0 ].size(); |
268 |
|
(*lock2d)[ i % m ][ j % n ].Release(); |
269 |
|
} |
270 |
|
else if ( parent ) parent->Release2DLocks( i, j ); |
271 |
|
}; |
272 |
|
|
273 |
|
int Comm::GetCommSize() { return size; }; |
274 |
|
|
275 |
|
int Comm::GetCommRank() { return rank; }; |
276 |
|
|
277 |
|
int Comm::GetGangSize() { return gang_size; }; |
278 |
|
|
279 |
|
int Comm::GetGangRank() { return gang_rank; }; |
280 |
|
|
281 |
|
void Comm::Print( int prefix ) |
282 |
|
{ |
283 |
|
printf( "%2d size %2d rank %2d gang_size %2d gang_rank %2d\n", |
284 |
|
prefix, size, rank, gang_size, gang_rank ); |
285 |
|
fflush( stdout ); |
286 |
|
}; |
287 |
|
|
288 |
|
|
289 |
|
int Comm::BalanceOver1DGangs( int n, int default_size, int nb ) |
290 |
|
{ |
291 |
|
size_t nparts = gang_size; |
292 |
|
if ( nparts > 1 ) return ( ( n - 1 ) / ( nb * nparts ) + 1 ) * nb; |
293 |
|
return default_size; |
294 |
|
}; |
295 |
|
|
296 |
|
Range Comm::DistributeOver1DThreads( int beg, int end, int nb ) |
297 |
|
{ |
298 |
|
size_t nparts = size; |
299 |
|
/** Select the proper partitioning policy. */ |
300 |
|
SchedulePolicy strategy = HMLP_SCHEDULE_DEFAULT; |
301 |
|
//SchedulePolicy strategy = HMLP_SCHEDULE_UNIFORM; |
302 |
|
/** Return the tuple accordingly. */ |
303 |
|
switch ( strategy ) |
304 |
|
{ |
305 |
|
case HMLP_SCHEDULE_DEFAULT: |
306 |
|
{ |
307 |
|
/** Default is Round Robin. */ |
308 |
|
} |
309 |
|
case HMLP_SCHEDULE_ROUND_ROBIN: |
310 |
|
{ |
311 |
|
return Range( beg + rank * nb, end, nparts * nb ); |
312 |
|
} |
313 |
|
case HMLP_SCHEDULE_UNIFORM: |
314 |
|
{ |
315 |
|
int len = ( ( end - beg - 1 ) / ( nparts * nb ) + 1 ) * nb; |
316 |
|
beg = beg + rank * len; |
317 |
|
end = std::min( end, beg + len ); |
318 |
|
return Range( beg, end, nb ); |
319 |
|
//printf( "GetRange(): HMLP_SCHEDULE_UNIFORM not yet implemented yet.\n" ); |
320 |
|
//exit( 1 ); |
321 |
|
} |
322 |
|
case HMLP_SCHEDULE_HEFT: |
323 |
|
{ |
324 |
|
printf( "GetRange(): HMLP_SCHEDULE_HEFT not yet implemented yet.\n" ); |
325 |
|
exit( 1 ); |
326 |
|
} |
327 |
|
default: |
328 |
|
{ |
329 |
|
exit( 1 ); |
330 |
|
} |
331 |
|
} |
332 |
|
}; /** end Comm::DistributeOver1DThreads() */ |
333 |
|
|
334 |
|
|
335 |
|
Range Comm::DistributeOver1DGangs( int beg, int end, int nb ) |
336 |
|
{ |
337 |
|
size_t nparts = gang_size; |
338 |
|
/** Select the proper partitioning policy. */ |
339 |
|
SchedulePolicy strategy = HMLP_SCHEDULE_DEFAULT; |
340 |
|
//SchedulePolicy strategy = HMLP_SCHEDULE_UNIFORM; |
341 |
|
/** Return the tuple accordingly. */ |
342 |
|
switch ( strategy ) |
343 |
|
{ |
344 |
|
case HMLP_SCHEDULE_DEFAULT: |
345 |
|
{ |
346 |
|
/** Default is Round Robin. */ |
347 |
|
} |
348 |
|
case HMLP_SCHEDULE_ROUND_ROBIN: |
349 |
|
{ |
350 |
|
return Range( beg + gang_rank * nb, end, nparts * nb ); |
351 |
|
} |
352 |
|
case HMLP_SCHEDULE_UNIFORM: |
353 |
|
{ |
354 |
|
int len = ( ( end - beg - 1 ) / ( nparts * nb ) + 1 ) * nb; |
355 |
|
beg = beg + gang_rank * len; |
356 |
|
end = std::min( end, beg + len ); |
357 |
|
return Range( beg, end, nb ); |
358 |
|
//printf( "GetRange(): HMLP_SCHEDULE_UNIFORM not yet implemented yet.\n" ); |
359 |
|
//exit( 1 ); |
360 |
|
} |
361 |
|
case HMLP_SCHEDULE_HEFT: |
362 |
|
{ |
363 |
|
printf( "GetRange(): HMLP_SCHEDULE_HEFT not yet implemented yet.\n" ); |
364 |
|
exit( 1 ); |
365 |
|
} |
366 |
|
default: |
367 |
|
{ |
368 |
|
exit( 1 ); |
369 |
|
} |
370 |
|
} |
371 |
|
}; /** end Comm::DistributeOver1DGangs() */ |
372 |
|
|
373 |
|
|
374 |
|
|
375 |
|
}; /** end namespace tci */ |
376 |
|
}; /** end namespace hmlp */ |