1 |
|
/** |
2 |
|
* HMLP (High-Performance Machine Learning Primitives) |
3 |
|
* |
4 |
|
* Copyright (C) 2014-2017, The University of Texas at Austin |
5 |
|
* |
6 |
|
* This program is free software: you can redistribute it and/or modify |
7 |
|
* it under the terms of the GNU General Public License as published by |
8 |
|
* the Free Software Foundation, either version 3 of the License, or |
9 |
|
* (at your option) any later version. |
10 |
|
* |
11 |
|
* This program is distributed in the hope that it will be useful, |
12 |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 |
|
* GNU General Public License for more details. |
15 |
|
* |
16 |
|
* You should have received a copy of the GNU General Public License |
17 |
|
* along with this program. If not, see the LICENSE file. |
18 |
|
* |
19 |
|
**/ |
20 |
|
|
21 |
|
#ifndef KERNELMATRIX_HPP |
22 |
|
#define KERNELMATRIX_HPP |
23 |
|
|
24 |
|
/** Using tgamma, M_PI, M_SQRT2 ... */ |
25 |
|
#include <cmath> |
26 |
|
/** BLAS/LAPACK support. */ |
27 |
|
#include <base/blas_lapack.hpp> |
28 |
|
/** KernelMatrix uses VirtualMatrix<T> as base. */ |
29 |
|
#include <containers/VirtualMatrix.hpp> |
30 |
|
/** DistData is used to store the data points. */ |
31 |
|
#include <DistData.hpp> |
32 |
|
|
33 |
|
using namespace std; |
34 |
|
using namespace hmlp; |
35 |
|
|
36 |
|
namespace hmlp |
37 |
|
{ |
38 |
|
|
39 |
|
typedef enum |
40 |
|
{ |
41 |
|
GAUSSIAN, |
42 |
|
SIGMOID, |
43 |
|
POLYNOMIAL, |
44 |
|
LAPLACE, |
45 |
|
GAUSSIAN_VAR_BANDWIDTH, |
46 |
|
TANH, |
47 |
|
QUARTIC, |
48 |
|
MULTIQUADRATIC, |
49 |
|
EPANECHNIKOV, |
50 |
|
USER_DEFINE |
51 |
|
} kernel_type; |
52 |
|
|
53 |
|
template<typename T, typename TP> |
54 |
|
struct kernel_s |
55 |
|
{ |
56 |
|
kernel_type type; |
57 |
|
|
58 |
|
/** Compute a single inner product. */ |
59 |
|
static inline T innerProduct( const TP* x, const TP* y, size_t d ) |
60 |
|
{ |
61 |
|
T accumulator = 0.0; |
62 |
|
#pragma omp parallel for reduction(+:accumulator) |
63 |
|
for ( size_t i = 0; i < d; i ++ ) accumulator += x[ i ] * y[ i ]; |
64 |
|
return accumulator; |
65 |
|
} |
66 |
|
|
67 |
|
/** Compute all pairwise inner products using GEMM_TN( 1.0, X, Y, 0.0, K ). */ |
68 |
|
static inline void innerProducts( const TP* X, const TP* Y, size_t d, T* K, size_t m, size_t n ) |
69 |
|
{ |
70 |
|
/** This BLAS function is defined in frame/base/blas_lapack.hpp. */ |
71 |
|
xgemm( "Transpose", "No-transpose", (int)m, (int)n, (int)d, (T)1.0, X, (int)d, Y, (int)d, (T)0.0, K, (int)m ); |
72 |
|
} |
73 |
|
|
74 |
|
/** Compute a single squared distance. */ |
75 |
|
static inline T squaredDistance( const TP* x, const TP* y, size_t d ) |
76 |
|
{ |
77 |
|
T accumulator = 0.0; |
78 |
|
#pragma omp parallel for reduction(+:accumulator) |
79 |
|
for ( size_t i = 0; i < d; i ++ ) accumulator += ( x[ i ] - y[ i ] ) * ( x[ i ] - y[ i ] ); |
80 |
|
return accumulator; |
81 |
|
} |
82 |
|
|
83 |
|
/** Compute all pairwise squared distances. */ |
84 |
|
static inline void squaredDistances( const TP* X, const TP* Y, size_t d, T* K, size_t m, size_t n ) |
85 |
|
{ |
86 |
|
innerProducts( X, Y, d, K, m, n ); |
87 |
|
vector<T> squaredNrmX( m, 0 ), squaredNrmY( n, 0 ); |
88 |
|
/** This BLAS function is defined in frame/base/blas_lapack.hpp. */ |
89 |
|
#pragma omp parallel for |
90 |
|
for ( size_t i = 0; i < m; i ++ ) squaredNrmX[ i ] = xdot( d, X + i * d, 1, X + i * d, 1 ); |
91 |
|
#pragma omp parallel for |
92 |
|
for ( size_t j = 0; j < n; j ++ ) squaredNrmY[ j ] = xdot( d, Y + j * d, 1, Y + j * d, 1 ); |
93 |
|
#pragma omp parallel for collapse(2) |
94 |
|
for ( size_t j = 0; j < n; j ++ ) |
95 |
|
for ( size_t i = 0; i < m; i ++ ) |
96 |
|
K[ j * m + i ] = squaredNrmX[ i ] - 2 * K[ j * m + i ] + squaredNrmY[ j ]; |
97 |
|
} |
98 |
|
|
99 |
|
inline T operator () ( const void* param, const TP* x, const TP* y, size_t d ) const |
100 |
|
{ |
101 |
|
switch ( type ) |
102 |
|
{ |
103 |
|
case GAUSSIAN: |
104 |
|
return exp( scal * squaredDistance( x, y, d ) ); |
105 |
|
case SIGMOID: |
106 |
|
return tanh( scal* innerProduct( x, y, d ) + cons ); |
107 |
|
case LAPLACE: |
108 |
|
return 0; |
109 |
|
case QUARTIC: |
110 |
|
return 0; |
111 |
|
case USER_DEFINE: |
112 |
|
return user_element_function( param, x, y, d ); |
113 |
|
default: |
114 |
|
printf( "invalid kernel type\n" ); |
115 |
|
exit( 1 ); |
116 |
|
} /** end switch ( type ) */ |
117 |
|
}; |
118 |
|
|
119 |
|
/** X should be at least d-by-m, and Y should be at least d-by-n. */ |
120 |
|
inline void operator () ( const void* param, const TP* X, const TP* Y, size_t d, T* K, size_t m, size_t n ) const |
121 |
|
{ |
122 |
|
switch ( type ) |
123 |
|
{ |
124 |
|
case GAUSSIAN: |
125 |
|
squaredDistances( X, Y, d, K, m, n ); |
126 |
|
#pragma omp parallel for |
127 |
|
for ( size_t i = 0; i < m * n; i ++ ) K[ i ] = exp( scal * K[ i ] ); |
128 |
|
break; |
129 |
|
case SIGMOID: |
130 |
|
innerProducts( X, Y, d, K, m, n ); |
131 |
|
#pragma omp parallel for |
132 |
|
for ( size_t i = 0; i < m * n; i ++ ) K[ i ] = tanh( scal * K[ i ] + cons ); |
133 |
|
break; |
134 |
|
case LAPLACE: |
135 |
|
break; |
136 |
|
case QUARTIC: |
137 |
|
break; |
138 |
|
case USER_DEFINE: |
139 |
|
user_matrix_function( param, X, Y, d, K, m, n ); |
140 |
|
break; |
141 |
|
default: |
142 |
|
printf( "invalid kernel type\n" ); |
143 |
|
exit( 1 ); |
144 |
|
} /** end switch ( type ) */ |
145 |
|
}; |
146 |
|
|
147 |
|
T powe = 1; |
148 |
|
T scal = 1; |
149 |
|
T cons = 0; |
150 |
|
T *hi; |
151 |
|
T *hj; |
152 |
|
T *h; |
153 |
|
|
154 |
|
/** User-defined kernel functions. */ |
155 |
|
T (*user_element_function)( const void* param, const TP* x, const TP* y, size_t d ) = nullptr; |
156 |
|
void (*user_matrix_function)( const void* param, const T* X, const T* Y, size_t d, T* K, size_t m, size_t n ) = nullptr; |
157 |
|
|
158 |
|
}; |
159 |
|
|
160 |
|
|
161 |
|
template<typename T, class Allocator = std::allocator<T>> |
162 |
|
class KernelMatrix : public VirtualMatrix<T, Allocator>, |
163 |
|
public ReadWrite |
164 |
|
{ |
165 |
|
public: |
166 |
|
|
167 |
|
/** (Default) constructor for non-symmetric kernel matrices. */ |
168 |
|
KernelMatrix( size_t m_, size_t n_, size_t d_, kernel_s<T, T> &kernel_, |
169 |
|
Data<T> &sources_, Data<T> &targets_ ) |
170 |
|
: VirtualMatrix<T>( m_, n_ ), d( d_ ), |
171 |
|
sources( sources_ ), targets( targets_ ), |
172 |
|
kernel( kernel_ ), all_dimensions( d_ ) |
173 |
|
{ |
174 |
|
this->is_symmetric = false; |
175 |
|
for ( size_t i = 0; i < d; i ++ ) all_dimensions[ i ] = i; |
176 |
|
}; |
177 |
|
|
178 |
|
/** (Default) constructor for symmetric kernel matrices. */ |
179 |
|
KernelMatrix( size_t m, size_t n, size_t d, kernel_s<T, T>& kernel, Data<T> &sources ) |
180 |
|
: KernelMatrix( m, n, d, kernel, sources, sources ) |
181 |
|
{ |
182 |
|
assert( m == n ); |
183 |
|
this->is_symmetric = true; |
184 |
|
}; |
185 |
|
|
186 |
|
KernelMatrix( Data<T> &sources ) |
187 |
|
: sources( sources ), |
188 |
|
targets( sources ), |
189 |
|
VirtualMatrix<T>( sources.col(), sources.col() ), |
190 |
|
all_dimensions( sources.row() ) |
191 |
|
{ |
192 |
|
this->is_symmetric = true; |
193 |
|
this->d = sources.row(); |
194 |
|
this->kernel.type = GAUSSIAN; |
195 |
|
this->kernel.scal = -0.5; |
196 |
|
for ( size_t i = 0; i < d; i ++ ) all_dimensions[ i ] = i; |
197 |
|
}; |
198 |
|
|
199 |
|
/** (Default) destructor. */ |
200 |
|
~KernelMatrix() {}; |
201 |
|
|
202 |
|
/** ESSENTIAL: override the virtual function */ |
203 |
|
virtual T operator()( size_t i, size_t j ) override |
204 |
|
{ |
205 |
|
return kernel( nullptr, targets.columndata( i ), sources.columndata( j ), d ); |
206 |
|
}; |
207 |
|
|
208 |
|
/** (Overwrittable) ESSENTIAL: return K( I, J ) */ |
209 |
|
virtual Data<T> operator() ( const vector<size_t>& I, const vector<size_t>& J ) override |
210 |
|
{ |
211 |
|
Data<T> KIJ( I.size(), J.size() ); |
212 |
|
/** Early return if possible. */ |
213 |
|
if ( !I.size() || !J.size() ) return KIJ; |
214 |
|
/** Request for coordinates: A (targets), B (sources). */ |
215 |
|
Data<T> X = ( is_symmetric ) ? sources( all_dimensions, I ) : targets( all_dimensions, I ); |
216 |
|
Data<T> Y = sources( all_dimensions, J ); |
217 |
|
/** Evaluate KIJ using legacy interface. */ |
218 |
|
kernel( nullptr, X.data(), Y.data(), d, KIJ.data(), I.size(), J.size() ); |
219 |
|
/** Return K( I, J ). */ |
220 |
|
return KIJ; |
221 |
|
}; |
222 |
|
|
223 |
|
|
224 |
|
virtual Data<T> GeometryDistances( const vector<size_t>& I, const vector<size_t>& J ) override |
225 |
|
{ |
226 |
|
Data<T> KIJ( I.size(), J.size() ); |
227 |
|
/** Early return if possible. */ |
228 |
|
if ( !I.size() || !J.size() ) return KIJ; |
229 |
|
/** Request for coordinates: A (targets), B (sources). */ |
230 |
|
Data<T> A, B; |
231 |
|
/** For symmetry matrices, extract from sources. */ |
232 |
|
if ( is_symmetric ) |
233 |
|
{ |
234 |
|
A = sources( all_dimensions, I ); |
235 |
|
B = sources( all_dimensions, J ); |
236 |
|
} |
237 |
|
/** For non-symmetry matrices, extract from targets and sources. */ |
238 |
|
else |
239 |
|
{ |
240 |
|
A = targets( all_dimensions, I ); |
241 |
|
B = sources( all_dimensions, J ); |
242 |
|
} |
243 |
|
/** Compute inner products. */ |
244 |
|
xgemm( "Transpose", "No-transpose", I.size(), J.size(), d, |
245 |
|
-2.0, A.data(), A.row(), |
246 |
|
B.data(), B.row(), |
247 |
|
0.0, KIJ.data(), KIJ.row() ); |
248 |
|
/** Compute square 2-norms. */ |
249 |
|
vector<T> A2( I.size() ), B2( J.size() ); |
250 |
|
|
251 |
|
#pragma omp parallel for |
252 |
|
for ( size_t i = 0; i < I.size(); i ++ ) |
253 |
|
{ |
254 |
|
A2[ i ] = xdot( d, A.columndata( i ), 1, A.columndata( i ), 1 ); |
255 |
|
} /** end omp parallel for */ |
256 |
|
|
257 |
|
#pragma omp parallel for |
258 |
|
for ( size_t j = 0; j < J.size(); j ++ ) |
259 |
|
{ |
260 |
|
B2[ j ] = xdot( d, B.columndata( j ), 1, B.columndata( j ), 1 ); |
261 |
|
} /** end omp parallel for */ |
262 |
|
|
263 |
|
/** Add square norms to inner products to get square distances. */ |
264 |
|
#pragma omp parallel for |
265 |
|
for ( size_t j = 0; j < J.size(); j ++ ) |
266 |
|
for ( size_t i = 0; i < I.size(); i ++ ) |
267 |
|
KIJ( i, j ) += A2[ i ] + B2[ j ]; |
268 |
|
/** Return all pair-wise distances. */ |
269 |
|
return KIJ; |
270 |
|
}; /** end GeometryDistances() */ |
271 |
|
|
272 |
|
|
273 |
|
/** get the diagonal of KII, i.e. diag( K( I, I ) ) */ |
274 |
|
Data<T> Diagonal( vector<size_t> &I ) |
275 |
|
{ |
276 |
|
/** |
277 |
|
* return values |
278 |
|
*/ |
279 |
|
Data<T> DII( I.size(), 1, 0.0 ); |
280 |
|
|
281 |
|
/** at this moment we already have the corrdinates on this process */ |
282 |
|
switch ( kernel.type ) |
283 |
|
{ |
284 |
|
case GAUSSIAN: |
285 |
|
{ |
286 |
|
for ( size_t i = 0; i < I.size(); i ++ ) DII[ i ] = 1.0; |
287 |
|
break; |
288 |
|
} |
289 |
|
default: |
290 |
|
{ |
291 |
|
printf( "invalid kernel type\n" ); |
292 |
|
exit( 1 ); |
293 |
|
break; |
294 |
|
} |
295 |
|
} |
296 |
|
|
297 |
|
return DII; |
298 |
|
|
299 |
|
}; |
300 |
|
|
301 |
|
/** important sampling */ |
302 |
|
pair<T, size_t> ImportantSample( size_t j ) |
303 |
|
{ |
304 |
|
size_t i = std::rand() % this->col(); |
305 |
|
pair<T, size_t> sample( (*this)( i, j ), i ); |
306 |
|
return sample; |
307 |
|
}; |
308 |
|
|
309 |
|
void Print() |
310 |
|
{ |
311 |
|
for ( size_t j = 0; j < this->col(); j ++ ) |
312 |
|
{ |
313 |
|
printf( "%8lu ", j ); |
314 |
|
} |
315 |
|
printf( "\n" ); |
316 |
|
for ( size_t i = 0; i < this->row(); i ++ ) |
317 |
|
{ |
318 |
|
for ( size_t j = 0; j < this->col(); j ++ ) |
319 |
|
{ |
320 |
|
printf( "% 3.1E ", (*this)( i, j ) ); |
321 |
|
} |
322 |
|
printf( "\n" ); |
323 |
|
} |
324 |
|
}; /** end Print() */ |
325 |
|
|
326 |
|
/** Return number of attributes. */ |
327 |
|
size_t dim() { return d; }; |
328 |
|
|
329 |
|
/** flops required for Kab */ |
330 |
|
double flops( size_t na, size_t nb ) |
331 |
|
{ |
332 |
|
double flopcount = 0.0; |
333 |
|
|
334 |
|
switch ( kernel.type ) |
335 |
|
{ |
336 |
|
case GAUSSIAN: |
337 |
|
{ |
338 |
|
flopcount = na * nb * ( 2.0 * d + 35.0 ); |
339 |
|
break; |
340 |
|
} |
341 |
|
default: |
342 |
|
{ |
343 |
|
printf( "invalid kernel type\n" ); |
344 |
|
exit( 1 ); |
345 |
|
break; |
346 |
|
} |
347 |
|
} |
348 |
|
return flopcount; |
349 |
|
}; |
350 |
|
|
351 |
|
private: |
352 |
|
|
353 |
|
bool is_symmetric = true; |
354 |
|
|
355 |
|
size_t d = 0; |
356 |
|
|
357 |
|
Data<T> &sources; |
358 |
|
|
359 |
|
Data<T> &targets; |
360 |
|
|
361 |
|
/** legacy data structure */ |
362 |
|
kernel_s<T, T> kernel; |
363 |
|
/** [ 0, 1, ..., d-1 ] */ |
364 |
|
vector<size_t> all_dimensions; |
365 |
|
|
366 |
|
}; /** end class KernelMatrix */ |
367 |
|
|
368 |
|
|
369 |
|
|
370 |
|
template<typename T, typename TP, class Allocator = std::allocator<TP>> |
371 |
|
class DistKernelMatrix : public DistVirtualMatrix<T, Allocator>, |
372 |
|
public ReadWrite |
373 |
|
{ |
374 |
|
public: |
375 |
|
|
376 |
|
/** (Default) unsymmetric kernel matrix */ |
377 |
|
DistKernelMatrix |
378 |
|
( |
379 |
|
size_t m, size_t n, size_t d, |
380 |
|
/** by default we assume sources are distributed in [STAR, CBLK] */ |
381 |
|
DistData<STAR, CBLK, TP> &sources, |
382 |
|
/** by default we assume targets are distributed in [STAR, CBLK] */ |
383 |
|
DistData<STAR, CBLK, TP> &targets, |
384 |
|
mpi::Comm comm |
385 |
|
) |
386 |
|
: all_dimensions( d ), sources_user( sources ), targets_user( targets ), |
387 |
|
DistVirtualMatrix<T>( m, n, comm ) |
388 |
|
{ |
389 |
|
this->is_symmetric = false; |
390 |
|
this->d = d; |
391 |
|
this->sources = &sources; |
392 |
|
this->targets = &targets; |
393 |
|
for ( size_t i = 0; i < d; i ++ ) all_dimensions[ i ] = i; |
394 |
|
}; |
395 |
|
|
396 |
|
/** Unsymmetric kernel matrix with legacy kernel_s<T> */ |
397 |
|
DistKernelMatrix |
398 |
|
( |
399 |
|
size_t m, size_t n, size_t d, |
400 |
|
kernel_s<T, TP> &kernel, |
401 |
|
/** by default we assume sources are distributed in [STAR, CBLK] */ |
402 |
|
DistData<STAR, CBLK, TP> &sources, |
403 |
|
/** by default we assume targets are distributed in [STAR, CBLK] */ |
404 |
|
DistData<STAR, CBLK, TP> &targets, |
405 |
|
mpi::Comm comm |
406 |
|
) |
407 |
|
: DistKernelMatrix( m, n, d, sources, targets, comm ) |
408 |
|
{ |
409 |
|
this->kernel = kernel; |
410 |
|
}; |
411 |
|
|
412 |
|
/** (Default) symmetric kernel matrix */ |
413 |
|
DistKernelMatrix |
414 |
|
( |
415 |
|
size_t n, size_t d, |
416 |
|
/** by default we assume sources are distributed in [STAR, CBLK] */ |
417 |
|
DistData<STAR, CBLK, TP> &sources, |
418 |
|
mpi::Comm comm |
419 |
|
) |
420 |
|
: all_dimensions( d ), sources_user( sources ), targets_user( d, 0, comm ), |
421 |
|
DistVirtualMatrix<T>( n, n, comm ) |
422 |
|
{ |
423 |
|
this->is_symmetric = true; |
424 |
|
this->d = d; |
425 |
|
this->sources = &sources; |
426 |
|
for ( size_t i = 0; i < d; i ++ ) all_dimensions[ i ] = i; |
427 |
|
}; |
428 |
|
|
429 |
|
/** Symmetric kernel matrix with legacy kernel_s<T> */ |
430 |
|
DistKernelMatrix |
431 |
|
( |
432 |
|
size_t n, size_t d, |
433 |
|
kernel_s<T, TP> &kernel, |
434 |
|
/** by default we assume sources are distributed in [STAR, CBLK] */ |
435 |
|
DistData<STAR, CBLK, TP> &sources, |
436 |
|
mpi::Comm comm |
437 |
|
) |
438 |
|
: DistKernelMatrix( n, d, sources, comm ) |
439 |
|
{ |
440 |
|
this->kernel = kernel; |
441 |
|
}; |
442 |
|
|
443 |
|
|
444 |
|
DistKernelMatrix( DistData<STAR, CBLK, TP> &sources, mpi::Comm comm ) |
445 |
|
: DistKernelMatrix( sources.col(), sources.row(), sources, comm ) |
446 |
|
{ |
447 |
|
this->kernel.type = GAUSSIAN; |
448 |
|
this->kernel.scal = -0.5; |
449 |
|
}; |
450 |
|
|
451 |
|
/** (Default) destructor */ |
452 |
|
~DistKernelMatrix() {}; |
453 |
|
|
454 |
|
/** (Overwrittable) Request a single Kij */ |
455 |
|
virtual T operator () ( size_t i, size_t j ) override |
456 |
|
{ |
457 |
|
TP* x = ( is_symmetric ) ? sources_user.columndata( i ) : targets_user.columndata( i ); |
458 |
|
TP* y = sources_user.columndata( j ); |
459 |
|
return kernel( nullptr, x, y, d ); |
460 |
|
}; /** end operator () */ |
461 |
|
|
462 |
|
|
463 |
|
/** (Overwrittable) ESSENTIAL: return K( I, J ) */ |
464 |
|
virtual Data<T> operator() ( const vector<size_t>& I, const vector<size_t>& J ) override |
465 |
|
{ |
466 |
|
Data<T> KIJ( I.size(), J.size() ); |
467 |
|
/** Early return if possible. */ |
468 |
|
if ( !I.size() || !J.size() ) return KIJ; |
469 |
|
/** Request for coordinates: A (targets), B (sources). */ |
470 |
|
Data<T> X = ( is_symmetric ) ? sources_user( all_dimensions, I ) : targets_user( all_dimensions, I ); |
471 |
|
Data<T> Y = sources_user( all_dimensions, J ); |
472 |
|
kernel( nullptr, X.data(), Y.data(), d, KIJ.data(), I.size(), J.size() ); |
473 |
|
return KIJ; |
474 |
|
}; |
475 |
|
|
476 |
|
|
477 |
|
/** */ |
478 |
|
virtual Data<T> GeometryDistances( const vector<size_t>& I, const vector<size_t>& J ) override |
479 |
|
{ |
480 |
|
Data<T> KIJ( I.size(), J.size() ); |
481 |
|
/** Early return if possible. */ |
482 |
|
if ( !I.size() || !J.size() ) return KIJ; |
483 |
|
/** Request for coordinates: A (targets), B (sources). */ |
484 |
|
Data<TP> A, B; |
485 |
|
/** For symmetry matrices, extract from sources. */ |
486 |
|
if ( is_symmetric ) |
487 |
|
{ |
488 |
|
A = sources_user( all_dimensions, I ); |
489 |
|
B = sources_user( all_dimensions, J ); |
490 |
|
} |
491 |
|
/** For non-symmetry matrices, extract from targets and sources. */ |
492 |
|
else |
493 |
|
{ |
494 |
|
A = targets_user( all_dimensions, I ); |
495 |
|
B = sources_user( all_dimensions, J ); |
496 |
|
} |
497 |
|
/** Compute inner products. */ |
498 |
|
xgemm( "Transpose", "No-transpose", I.size(), J.size(), d, |
499 |
|
-2.0, A.data(), A.row(), |
500 |
|
B.data(), B.row(), |
501 |
|
0.0, KIJ.data(), KIJ.row() ); |
502 |
|
/** Compute square 2-norms. */ |
503 |
|
vector<TP> A2( I.size() ), B2( J.size() ); |
504 |
|
|
505 |
|
#pragma omp parallel for |
506 |
|
for ( size_t i = 0; i < I.size(); i ++ ) |
507 |
|
{ |
508 |
|
A2[ i ] = xdot( d, A.columndata( i ), 1, A.columndata( i ), 1 ); |
509 |
|
} /** end omp parallel for */ |
510 |
|
|
511 |
|
#pragma omp parallel for |
512 |
|
for ( size_t j = 0; j < J.size(); j ++ ) |
513 |
|
{ |
514 |
|
B2[ j ] = xdot( d, B.columndata( j ), 1, B.columndata( j ), 1 ); |
515 |
|
} /** end omp parallel for */ |
516 |
|
|
517 |
|
/** Add square norms to inner products to get square distances. */ |
518 |
|
#pragma omp parallel for |
519 |
|
for ( size_t j = 0; j < J.size(); j ++ ) |
520 |
|
for ( size_t i = 0; i < I.size(); i ++ ) |
521 |
|
KIJ( i, j ) += A2[ i ] + B2[ j ]; |
522 |
|
/** Return all pair-wise distances. */ |
523 |
|
return KIJ; |
524 |
|
}; /** end GeometryDistances() */ |
525 |
|
|
526 |
|
|
527 |
|
/** Get the diagonal of KII, i.e. diag( K( I, I ) ). */ |
528 |
|
Data<T> Diagonal( vector<size_t> &I ) |
529 |
|
{ |
530 |
|
/** MPI */ |
531 |
|
int size = this->Comm_size(); |
532 |
|
int rank = this->Comm_rank(); |
533 |
|
|
534 |
|
/** |
535 |
|
* return values |
536 |
|
* |
537 |
|
* NOTICE: even KIJ can be an 0-by-0 matrix for this MPI rank, |
538 |
|
* yet early return is not allowed. All MPI process must execute |
539 |
|
* all collaborative communication routines to avoid deadlock. |
540 |
|
*/ |
541 |
|
Data<T> DII( I.size(), 1, 0.0 ); |
542 |
|
|
543 |
|
/** at this moment we already have the corrdinates on this process */ |
544 |
|
switch ( kernel.type ) |
545 |
|
{ |
546 |
|
case GAUSSIAN: |
547 |
|
{ |
548 |
|
for ( size_t i = 0; i < I.size(); i ++ ) DII[ i ] = 1.0; |
549 |
|
break; |
550 |
|
} |
551 |
|
case LAPLACE: |
552 |
|
{ |
553 |
|
for ( size_t i = 0; i < I.size(); i ++ ) DII[ i ] = 1.0; |
554 |
|
break; |
555 |
|
} |
556 |
|
case QUARTIC: |
557 |
|
{ |
558 |
|
for ( size_t i = 0; i < I.size(); i ++ ) DII[ i ] = 1.0; |
559 |
|
break; |
560 |
|
} |
561 |
|
default: |
562 |
|
{ |
563 |
|
printf( "invalid kernel type\n" ); |
564 |
|
exit( 1 ); |
565 |
|
break; |
566 |
|
} |
567 |
|
} |
568 |
|
|
569 |
|
return DII; |
570 |
|
|
571 |
|
}; /** end Diagonal() */ |
572 |
|
|
573 |
|
|
574 |
|
/** Important sampling */ |
575 |
|
pair<T, size_t> ImportantSample( size_t j ) |
576 |
|
{ |
577 |
|
size_t i = std::rand() % this->col(); |
578 |
|
while( !sources_user.HasColumn( i ) ) i = std::rand() % this->col(); |
579 |
|
assert( sources_user.HasColumn( i ) ); |
580 |
|
pair<T, size_t> sample( 0, i ); |
581 |
|
return sample; |
582 |
|
}; |
583 |
|
|
584 |
|
void Print() |
585 |
|
{ |
586 |
|
for ( size_t j = 0; j < this->col(); j ++ ) |
587 |
|
{ |
588 |
|
printf( "%8lu ", j ); |
589 |
|
} |
590 |
|
printf( "\n" ); |
591 |
|
for ( size_t i = 0; i < this->row(); i ++ ) |
592 |
|
{ |
593 |
|
for ( size_t j = 0; j < this->col(); j ++ ) |
594 |
|
{ |
595 |
|
printf( "% 3.1E ", (*this)( i, j ) ); |
596 |
|
} |
597 |
|
printf( "\n" ); |
598 |
|
} |
599 |
|
}; /** end Print() */ |
600 |
|
|
601 |
|
/** return number of attributes */ |
602 |
|
size_t dim() { return d; }; |
603 |
|
|
604 |
|
/** flops required for Kab */ |
605 |
|
double flops( size_t na, size_t nb ) |
606 |
|
{ |
607 |
|
double flopcount = 0.0; |
608 |
|
|
609 |
|
switch ( kernel.type ) |
610 |
|
{ |
611 |
|
case GAUSSIAN: |
612 |
|
{ |
613 |
|
flopcount = na * nb * ( 2.0 * d + 35.0 ); |
614 |
|
break; |
615 |
|
} |
616 |
|
default: |
617 |
|
{ |
618 |
|
printf( "invalid kernel type\n" ); |
619 |
|
exit( 1 ); |
620 |
|
break; |
621 |
|
} |
622 |
|
} |
623 |
|
return flopcount; |
624 |
|
}; |
625 |
|
|
626 |
|
void SendIndices( vector<size_t> ids, int dest, mpi::Comm comm ) |
627 |
|
{ |
628 |
|
auto param = sources_user( all_dimensions, ids ); |
629 |
|
mpi::SendVector( ids, dest, 90, comm ); |
630 |
|
mpi::SendVector( param, dest, 90, comm ); |
631 |
|
}; |
632 |
|
|
633 |
|
void RecvIndices( int src, mpi::Comm comm, mpi::Status *status ) |
634 |
|
{ |
635 |
|
vector<size_t> ids; |
636 |
|
Data<TP> param; |
637 |
|
mpi::RecvVector( ids, src, 90, comm, status ); |
638 |
|
mpi::RecvVector( param, src, 90, comm, status ); |
639 |
|
assert( param.size() == ids.size() * dim() ); |
640 |
|
param.resize( dim(), param.size() / dim() ); |
641 |
|
/** Insert into hash table */ |
642 |
|
sources_user.InsertColumns( ids, param ); |
643 |
|
}; |
644 |
|
|
645 |
|
/** Bcast cids from sender for K( :, cids ) evaluation. */ |
646 |
|
void BcastIndices( vector<size_t> ids, int root, mpi::Comm comm ) |
647 |
|
{ |
648 |
|
int rank; mpi::Comm_rank( comm, &rank ); |
649 |
|
/** Bcast size of cids from root */ |
650 |
|
size_t recv_size = ids.size(); |
651 |
|
mpi::Bcast( &recv_size, 1, root, comm ); |
652 |
|
/** Resize to receive cids and parameters */ |
653 |
|
Data<TP> param; |
654 |
|
if ( rank == root ) |
655 |
|
{ |
656 |
|
param = sources_user( all_dimensions, ids ); |
657 |
|
} |
658 |
|
else |
659 |
|
{ |
660 |
|
ids.resize( recv_size ); |
661 |
|
param.resize( dim(), recv_size ); |
662 |
|
} |
663 |
|
/** Bcast cids and parameters from root */ |
664 |
|
mpi::Bcast( ids.data(), recv_size, root, comm ); |
665 |
|
mpi::Bcast( param.data(), dim() * recv_size, root, comm ); |
666 |
|
/** Insert into hash table */ |
667 |
|
sources_user.InsertColumns( ids, param ); |
668 |
|
}; |
669 |
|
|
670 |
|
void RequestIndices( const vector<vector<size_t>>& ids ) override |
671 |
|
{ |
672 |
|
auto comm = this->GetComm(); |
673 |
|
auto rank = this->GetCommRank(); |
674 |
|
auto size = this->GetCommSize(); |
675 |
|
|
676 |
|
assert( ids.size() == size ); |
677 |
|
|
678 |
|
vector<vector<size_t>> recv_ids( size ); |
679 |
|
vector<vector<TP>> send_para( size ); |
680 |
|
vector<vector<TP>> recv_para( size ); |
681 |
|
|
682 |
|
/** Send out cids request to each rank. */ |
683 |
|
mpi::AlltoallVector( ids, recv_ids, comm ); |
684 |
|
|
685 |
|
for ( int p = 0; p < size; p ++ ) |
686 |
|
{ |
687 |
|
Data<TP> para = sources_user( all_dimensions, recv_ids[ p ] ); |
688 |
|
send_para[ p ].insert( send_para[ p ].end(), para.begin(), para.end() ); |
689 |
|
//send_para[ p ] = sources_user( all_dimensions, recv_ids[ p ] ); |
690 |
|
} |
691 |
|
|
692 |
|
/** Exchange out parameters. */ |
693 |
|
mpi::AlltoallVector( send_para, recv_para, comm ); |
694 |
|
|
695 |
|
for ( int p = 0; p < size; p ++ ) |
696 |
|
{ |
697 |
|
assert( recv_para[ p ].size() == dim() * ids[ p ].size() ); |
698 |
|
if ( p != rank && ids[ p ].size() ) |
699 |
|
{ |
700 |
|
Data<TP> para; |
701 |
|
para.insert( para.end(), recv_para[ p ].begin(), recv_para[ p ].end() ); |
702 |
|
para.resize( dim(), para.size() / dim() ); |
703 |
|
sources_user.InsertColumns( ids[ p ], para ); |
704 |
|
} |
705 |
|
} |
706 |
|
}; |
707 |
|
|
708 |
|
private: |
709 |
|
|
710 |
|
bool is_symmetric = false; |
711 |
|
|
712 |
|
size_t d = 0; |
713 |
|
|
714 |
|
/** Legacy data structure for kernel matrices. */ |
715 |
|
kernel_s<T, TP> kernel; |
716 |
|
|
717 |
|
/** Pointers to user provided data points in block cylic distribution. */ |
718 |
|
DistData<STAR, CBLK, TP> *sources = NULL; |
719 |
|
DistData<STAR, CBLK, TP> *targets = NULL; |
720 |
|
|
721 |
|
/** For local essential tree [LET]. */ |
722 |
|
DistData<STAR, USER, TP> sources_user; |
723 |
|
DistData<STAR, USER, TP> targets_user; |
724 |
|
|
725 |
|
/** [ 0, 1, ..., d-1 ] */ |
726 |
|
vector<size_t> all_dimensions; |
727 |
|
}; /** end class DistKernelMatrix */ |
728 |
|
|
729 |
|
}; /** end namespace hmlp */ |
730 |
|
|
731 |
|
#endif /** define KERNELMATRIX_HPP */ |