1 |
|
#ifndef OOCCOVMATRIX_HPP |
2 |
|
#define OOCCOVMATRIX_HPP |
3 |
|
|
4 |
|
#include <exception> |
5 |
|
|
6 |
|
/** BLAS/LAPACK support */ |
7 |
|
#include <base/blas_lapack.hpp> |
8 |
|
/** GEMM task support */ |
9 |
|
#include <primitives/gemm.hpp> |
10 |
|
/** MLPGaussNewton uses VirtualMatrix<T> as base */ |
11 |
|
#include <containers/VirtualMatrix.hpp> |
12 |
|
/** For GOFMM compatability */ |
13 |
|
#include <containers/SPDMatrix.hpp> |
14 |
|
|
15 |
|
using namespace std; |
16 |
|
using namespace hmlp; |
17 |
|
|
18 |
|
namespace hmlp |
19 |
|
{ |
20 |
|
|
21 |
|
|
22 |
|
template<typename T> |
23 |
|
class CovTask : public Task |
24 |
|
{ |
25 |
|
public: |
26 |
|
|
27 |
|
vector<OOCData<T>> *arg = NULL; |
28 |
|
|
29 |
|
vector<size_t> ids; |
30 |
|
vector<size_t> I; |
31 |
|
vector<size_t> J; |
32 |
|
|
33 |
|
Data<T> *KIJ = NULL; |
34 |
|
|
35 |
|
|
36 |
|
int *count = NULL; |
37 |
|
|
38 |
|
void Set( vector<OOCData<T>> *user_arg, |
39 |
|
const vector<size_t> user_ids, |
40 |
|
const vector<size_t> user_I, |
41 |
|
const vector<size_t> user_J, Data<T> *user_KIJ, int *user_count ) |
42 |
|
{ |
43 |
|
arg = user_arg; |
44 |
|
ids = user_ids; |
45 |
|
I = user_I; |
46 |
|
J = user_J; |
47 |
|
KIJ = user_KIJ; |
48 |
|
count = user_count; |
49 |
|
}; |
50 |
|
|
51 |
|
/** Directly enqueue. */ |
52 |
|
void DependencyAnalysis() { this->TryEnqueue(); }; |
53 |
|
|
54 |
|
void Execute( Worker* user_worker ) |
55 |
|
{ |
56 |
|
try |
57 |
|
{ |
58 |
|
Data<T> C( I.size(), J.size(), 0 ); |
59 |
|
assert( arg && KIJ ); |
60 |
|
assert( KIJ->row() == I.size() && KIJ->col() == J.size() ); |
61 |
|
|
62 |
|
for ( auto id : ids ) |
63 |
|
{ |
64 |
|
assert( id < arg->size() ); |
65 |
|
OOCData<T> &X = (*arg)[ id ]; |
66 |
|
/** Allocate temporary buffers. */ |
67 |
|
Data<T> A( X.row(), I.size() ); |
68 |
|
Data<T> B( X.row(), J.size() ); |
69 |
|
|
70 |
|
for ( size_t j = 0; j < I.size(); j ++ ) |
71 |
|
for ( size_t i = 0; i < X.row(); i ++ ) |
72 |
|
A( i, j ) = X( i, I[ j ] ); |
73 |
|
|
74 |
|
for ( size_t j = 0; j < J.size(); j ++ ) |
75 |
|
for ( size_t i = 0; i < X.row(); i ++ ) |
76 |
|
B( i, j ) = X( i, J[ j ] ); |
77 |
|
|
78 |
|
/** Further create subtasks. */ |
79 |
|
//gemm::xgemm( HMLP_OP_T, HMLP_OP_N, (T)1.0, A, B, (T)1.0, C ); |
80 |
|
xgemm( "T", "N", I.size(), J.size(), X.row(), |
81 |
|
1.0, A.data(), A.row(), |
82 |
|
B.data(), B.row(), |
83 |
|
1.0, C.data(), C.row() ); |
84 |
|
} |
85 |
|
|
86 |
|
assert( KIJ->row() == I.size() && KIJ->col() == J.size() ); |
87 |
|
for ( size_t j = 0; j < J.size(); j ++ ) |
88 |
|
for ( size_t i = 0; i < I.size(); i ++ ) |
89 |
|
#pragma omp atomic update |
90 |
|
(*KIJ)( i, j ) += C( i, j ); |
91 |
|
} |
92 |
|
catch ( exception & e ) |
93 |
|
{ |
94 |
|
cout << "Standard execption: " << e.what() << endl; |
95 |
|
} |
96 |
|
}; |
97 |
|
|
98 |
|
}; |
99 |
|
|
100 |
|
|
101 |
|
template<typename T> |
102 |
|
class CovReduceTask : public Task |
103 |
|
{ |
104 |
|
public: |
105 |
|
|
106 |
|
vector<CovTask<T>*> subtasks; |
107 |
|
|
108 |
|
int count = 0; |
109 |
|
|
110 |
|
const size_t batch_size = 32; |
111 |
|
|
112 |
|
void Set( vector<OOCData<T>> *arg, |
113 |
|
const vector<size_t> I, |
114 |
|
const vector<size_t> J, Data<T> *KIJ ) |
115 |
|
{ |
116 |
|
name = string( "CovReduce" ); |
117 |
|
vector<size_t> ids; |
118 |
|
|
119 |
|
/** Create subtasks for each OOCData<T> */ |
120 |
|
for ( size_t i = 0; i < arg->size(); i ++ ) |
121 |
|
{ |
122 |
|
ids.push_back( i ); |
123 |
|
if ( ids.size() == batch_size ) |
124 |
|
{ |
125 |
|
subtasks.push_back( new CovTask<T>() ); |
126 |
|
subtasks.back()->Submit(); |
127 |
|
subtasks.back()->Set( arg, ids, I, J, KIJ, &count ); |
128 |
|
ids.clear(); |
129 |
|
} |
130 |
|
} |
131 |
|
if ( ids.size() ) |
132 |
|
{ |
133 |
|
subtasks.push_back( new CovTask<T>() ); |
134 |
|
subtasks.back()->Submit(); |
135 |
|
subtasks.back()->Set( arg, ids, I, J, KIJ, &count ); |
136 |
|
ids.clear(); |
137 |
|
} |
138 |
|
}; |
139 |
|
|
140 |
|
void DependencyAnalysis() |
141 |
|
{ |
142 |
|
for ( auto task : subtasks ) |
143 |
|
{ |
144 |
|
Scheduler::DependencyAdd( task, this ); |
145 |
|
task->DependencyAnalysis(); |
146 |
|
} |
147 |
|
}; |
148 |
|
|
149 |
|
void Execute( Worker* user_worker ) {}; |
150 |
|
}; |
151 |
|
|
152 |
|
|
153 |
|
template<typename T> |
154 |
|
class OOCCovMatrix : public VirtualMatrix<T> |
155 |
|
{ |
156 |
|
public: |
157 |
|
|
158 |
|
OOCCovMatrix( size_t d, size_t n, size_t nb, string filename ) |
159 |
|
: |
160 |
|
VirtualMatrix<T>( d, d ) |
161 |
|
{ |
162 |
|
this->nb = nb; |
163 |
|
for ( int i = 0; i < n; i += nb ) |
164 |
|
{ |
165 |
|
int ib = min( nb, n - i ); |
166 |
|
Samples.resize( Samples.size() + 1 ); |
167 |
|
printf( "ib %d d %lu\n", ib, d ); |
168 |
|
Samples.back().Set( ib, d, filename + to_string( i ) ); |
169 |
|
//X.Set( ib, d, filename + to_string( i ) ); |
170 |
|
} |
171 |
|
|
172 |
|
int comm_rank; mpi::Comm_rank( MPI_COMM_WORLD, &comm_rank ); |
173 |
|
int comm_size; mpi::Comm_size( MPI_COMM_WORLD, &comm_size ); |
174 |
|
|
175 |
|
D.resize( d, 0 ); |
176 |
|
#pragma omp parallel for |
177 |
|
for ( size_t i = comm_rank; i < d; i += comm_size ) |
178 |
|
{ |
179 |
|
D[ i ] = (*this)( i, i ); |
180 |
|
if ( D[ i ] <= 0 ) D[ i ] = 1.0; |
181 |
|
} |
182 |
|
auto Dsend = D; |
183 |
|
mpi::Allreduce( Dsend.data(), D.data(), D.size(), MPI_SUM, MPI_COMM_WORLD ); |
184 |
|
printf( "Finish diagonal\n" ); fflush( stdout ); |
185 |
|
}; |
186 |
|
|
187 |
|
|
188 |
|
/** Need additional support for diagonal evaluation */ |
189 |
|
Data<T> Diagonal( const vector<size_t> &I ) |
190 |
|
{ |
191 |
|
Data<T> DII( I.size(), 1 ); |
192 |
|
for ( auto i = 0; i < I.size(); i ++ ) DII[ i ] = D[ I[ i ] ]; |
193 |
|
return DII; |
194 |
|
}; |
195 |
|
|
196 |
|
/** ESSENTIAL: this is an abstract function */ |
197 |
|
virtual T operator()( size_t i, size_t j ) |
198 |
|
{ |
199 |
|
auto KIJ = (*this)( vector<size_t>( 1, i ), vector<size_t>( 1, j ) ); |
200 |
|
return KIJ[ 0 ]; |
201 |
|
}; |
202 |
|
|
203 |
|
/** ESSENTIAL: return a submatrix */ |
204 |
|
virtual Data<T> operator() |
205 |
|
( |
206 |
|
const vector<size_t> &I, |
207 |
|
const vector<size_t> &J |
208 |
|
) |
209 |
|
{ |
210 |
|
Data<T> KIJ( I.size(), J.size(), 0 ); |
211 |
|
|
212 |
|
if ( !I.size() || !J.size() ) return KIJ; |
213 |
|
|
214 |
|
for ( auto &i : I ) assert( i < this->row() ); |
215 |
|
for ( auto &j : J ) assert( j < this->col() ); |
216 |
|
|
217 |
|
double beg = omp_get_wtime(); |
218 |
|
double ooc_time = 0; |
219 |
|
|
220 |
|
//if ( hmlp_is_in_epoch_session() ) |
221 |
|
if ( 0 ) |
222 |
|
{ |
223 |
|
auto *task = new CovReduceTask<T>(); |
224 |
|
task->Set( &Samples, I, J, &KIJ ); |
225 |
|
task->Submit(); |
226 |
|
task->DependencyAnalysis(); |
227 |
|
task->CallBackWhileWaiting(); |
228 |
|
} |
229 |
|
else |
230 |
|
{ |
231 |
|
for ( auto &X : Samples ) |
232 |
|
{ |
233 |
|
Data<T> A( X.row(), I.size() ); |
234 |
|
Data<T> B( X.row(), J.size() ); |
235 |
|
|
236 |
|
double ooc_beg = omp_get_wtime(); |
237 |
|
|
238 |
|
for ( size_t j = 0; j < I.size(); j ++ ) |
239 |
|
for ( size_t i = 0; i < X.row(); i ++ ) |
240 |
|
A( i, j ) = X( i, I[ j ] ); |
241 |
|
|
242 |
|
for ( size_t j = 0; j < J.size(); j ++ ) |
243 |
|
for ( size_t i = 0; i < X.row(); i ++ ) |
244 |
|
B( i, j ) = X( i, J[ j ] ); |
245 |
|
|
246 |
|
ooc_time += omp_get_wtime() - ooc_beg; |
247 |
|
|
248 |
|
assert( !A.HasIllegalValue() ); |
249 |
|
assert( !B.HasIllegalValue() ); |
250 |
|
//printf( "I %lu J %lu X.row() %lu X.col() %lu\n", I[ 0 ], J[ 0 ], X.row(), X.col() ); |
251 |
|
//for ( size_t i = 0; i < all_rows.size(); i ++ ) all_rows[ i ] = i; |
252 |
|
//auto A = X( all_rows, I ); |
253 |
|
//printf( "I %lu J %lu X.row() %lu X.col() %lu Finish A\n", I[ 0 ], J[ 0 ], X.row(), X.col() ); |
254 |
|
//auto B = X( all_rows, J ); |
255 |
|
//printf( "I %lu J %lu X.row() %lu X.col() %lu Finish B\n", I[ 0 ], J[ 0 ], X.row(), X.col() ); |
256 |
|
//gemm::xgemm( HMLP_OP_T, HMLP_OP_N, (T)1.0, A, B, (T)1.0, KIJ ); |
257 |
|
{ |
258 |
|
xgemm( "T", "N", I.size(), J.size(), X.row(), |
259 |
|
1.0, A.data(), A.row(), |
260 |
|
B.data(), B.row(), |
261 |
|
1.0, KIJ.data(), KIJ.row() ); |
262 |
|
} |
263 |
|
} |
264 |
|
} |
265 |
|
//assert( !KIJ.HasIllegalValue() ); |
266 |
|
|
267 |
|
double KIJ_time = omp_get_wtime() - beg; |
268 |
|
|
269 |
|
if ( !reported && I.size() >= 512 && J.size() >= 512 ) |
270 |
|
{ |
271 |
|
printf( "KIJ %lu %lu in %lfs ooc %lfs\n", I.size(), J.size(), KIJ_time, ooc_time ); |
272 |
|
reported = true; |
273 |
|
} |
274 |
|
|
275 |
|
|
276 |
|
return KIJ; |
277 |
|
}; |
278 |
|
|
279 |
|
|
280 |
|
template<typename TINDEX> |
281 |
|
double flops( TINDEX na, TINDEX nb ) |
282 |
|
{ |
283 |
|
return 0.0; |
284 |
|
}; |
285 |
|
|
286 |
|
private: |
287 |
|
|
288 |
|
bool reported = false; |
289 |
|
|
290 |
|
size_t n_samples = 0; |
291 |
|
|
292 |
|
size_t nb = 512; |
293 |
|
|
294 |
|
vector<T> D; |
295 |
|
|
296 |
|
/** n_samples / nb files, each with n_samples */ |
297 |
|
vector<OOCData<T>> Samples; |
298 |
|
|
299 |
|
}; /** end class OOCCovMatrix */ |
300 |
|
}; /** end namespace hmlp */ |
301 |
|
|
302 |
|
#endif /** define OOCCOVMATRIX_HPP */ |