1 |
|
/** |
2 |
|
* HMLP (High-Performance Machine Learning Primitives) |
3 |
|
* |
4 |
|
* Copyright (C) 2014-2017, The University of Texas at Austin |
5 |
|
* |
6 |
|
* This program is free software: you can redistribute it and/or modify |
7 |
|
* it under the terms of the GNU General Public License as published by |
8 |
|
* the Free Software Foundation, either version 3 of the License, or |
9 |
|
* (at your option) any later version. |
10 |
|
* |
11 |
|
* This program is distributed in the hope that it will be useful, |
12 |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 |
|
* GNU General Public License for more details. |
15 |
|
* |
16 |
|
* You should have received a copy of the GNU General Public License |
17 |
|
* along with this program. If not, see the LICENSE file. |
18 |
|
* |
19 |
|
**/ |
20 |
|
|
21 |
|
|
22 |
|
|
23 |
|
#ifndef LOWRANK_HPP |
24 |
|
#define LOWRANK_HPP |
25 |
|
|
26 |
|
#include <assert.h> |
27 |
|
#include <typeinfo> |
28 |
|
#include <algorithm> |
29 |
|
#include <random> |
30 |
|
|
31 |
|
|
32 |
|
#include <hmlp.h> |
33 |
|
#include <hmlp_base.hpp> |
34 |
|
|
35 |
|
|
36 |
|
using namespace std; |
37 |
|
using namespace hmlp; |
38 |
|
|
39 |
|
|
40 |
|
namespace hmlp |
41 |
|
{ |
42 |
|
namespace lowrank |
43 |
|
{ |
44 |
|
|
45 |
|
|
46 |
|
|
47 |
|
|
48 |
|
|
49 |
|
|
50 |
|
|
51 |
|
/** TODO: this fixed rank id will be deprecated */ |
52 |
|
//template<typename T> |
53 |
|
//void id |
54 |
|
//( |
55 |
|
// int m, int n, int maxs, |
56 |
|
// std::vector<T> A, |
57 |
|
// std::vector<size_t> &skels, hmlp::Data<T> &proj, std::vector<int> &jpvt |
58 |
|
//) |
59 |
|
//{ |
60 |
|
// int nb = 512; |
61 |
|
// int lwork = 2 * n + ( n + 1 ) * nb; |
62 |
|
// std::vector<T> work( lwork ); |
63 |
|
// std::vector<T> tau( std::min( m, n ) ); |
64 |
|
// std::vector<T> S, Z; |
65 |
|
// std::vector<T> A_tmp = A; |
66 |
|
// |
67 |
|
// // Early return |
68 |
|
// if ( n <= maxs ) |
69 |
|
// { |
70 |
|
// skels.resize( n ); |
71 |
|
// proj.resize( n, n, 0.0 ); |
72 |
|
// for ( int i = 0; i < n; i ++ ) |
73 |
|
// { |
74 |
|
// skels[i] = i; |
75 |
|
// proj[ i * proj.row() + i ] = 1.0; |
76 |
|
// } |
77 |
|
// return; |
78 |
|
// } |
79 |
|
// |
80 |
|
// // Initilize jpvt to zeros. Otherwise, GEQP3 will permute A. |
81 |
|
// jpvt.resize( n, 0 ); |
82 |
|
// |
83 |
|
// // Traditional pivoting QR (GEQP3) |
84 |
|
// hmlp::xgeqp3 |
85 |
|
// ( |
86 |
|
// m, n, |
87 |
|
// A_tmp.data(), m, |
88 |
|
// jpvt.data(), |
89 |
|
// tau.data(), |
90 |
|
// work.data(), lwork |
91 |
|
// ); |
92 |
|
// //printf( "end xgeqp3\n" ); |
93 |
|
// |
94 |
|
// jpvt.resize( maxs ); |
95 |
|
// skels.resize( maxs ); |
96 |
|
// |
97 |
|
// // Now shift jpvt from 1-base to 0-base index. |
98 |
|
// for ( int j = 0; j < jpvt.size(); j ++ ) |
99 |
|
// { |
100 |
|
// jpvt[ j ] = jpvt[ j ] - 1; |
101 |
|
// skels[ j ] = jpvt[ j ]; |
102 |
|
// } |
103 |
|
// |
104 |
|
// // TODO: Here we only need several things to get rid of xgels. |
105 |
|
// // |
106 |
|
// // 0. R11 = zeros( s ) |
107 |
|
// // 1. get R11 = up_tiangular( A_tmp( 1:s, 1:s ) ) |
108 |
|
// // 2. get proj( 1:s, jpvt( 1:n ) ) = A_tmp( 1:s 1:n ) |
109 |
|
// // 3. xtrsm( "L", "U", "N", "N", s, n, 1.0, R11.data(), s, proj.data(), s ) |
110 |
|
// |
111 |
|
// |
112 |
|
// |
113 |
|
// |
114 |
|
// |
115 |
|
// Z.resize( m * jpvt.size() ); |
116 |
|
// |
117 |
|
// for ( int j = 0; j < jpvt.size(); j ++ ) |
118 |
|
// { |
119 |
|
// // reuse Z |
120 |
|
// for ( int i = 0; i < m; i ++ ) |
121 |
|
// { |
122 |
|
// Z[ j * m + i ] = A[ jpvt[ j ] * m + i ]; |
123 |
|
// } |
124 |
|
// } |
125 |
|
// auto A_skel = Z; |
126 |
|
// |
127 |
|
// |
128 |
|
// S = A; |
129 |
|
// // P (overwrite S) = pseudo-inverse( Z ) * S |
130 |
|
// hmlp::xgels |
131 |
|
// ( |
132 |
|
// "N", |
133 |
|
// m, jpvt.size(), n, |
134 |
|
// Z.data(), m, |
135 |
|
// S.data(), m, |
136 |
|
// work.data(), lwork |
137 |
|
// ); |
138 |
|
// |
139 |
|
// |
140 |
|
// // Fill in proj |
141 |
|
// proj.resize( jpvt.size(), n ); |
142 |
|
// for ( int j = 0; j < n; j ++ ) |
143 |
|
// { |
144 |
|
// for ( int i = 0; i < jpvt.size(); i ++ ) |
145 |
|
// { |
146 |
|
// proj[ j * jpvt.size() + i ] = S[ j * m + i ]; |
147 |
|
// } |
148 |
|
// } |
149 |
|
// |
150 |
|
// |
151 |
|
// |
152 |
|
//#ifdef DEBUG_SKEL |
153 |
|
// double nrm = hmlp_norm( m, n, A.data(), m ); |
154 |
|
// |
155 |
|
// hmlp::xgemm |
156 |
|
// ( |
157 |
|
// "N", "N", |
158 |
|
// m, n, jpvt.size(), |
159 |
|
// -1.0, A_skel.data(), m, |
160 |
|
// S.data(), m, |
161 |
|
// 1.0, A.data(), m |
162 |
|
// ); |
163 |
|
// |
164 |
|
// double err = hmlp_norm( m, n, A.data(), m ); |
165 |
|
// printf( "m %d n %d k %lu absolute l2 error %E related l2 error %E\n", |
166 |
|
// m, n, jpvt.size(), |
167 |
|
// err, err / nrm ); |
168 |
|
//#endif |
169 |
|
// |
170 |
|
//}; // end id() |
171 |
|
// |
172 |
|
|
173 |
|
|
174 |
|
|
175 |
|
|
176 |
|
/** |
177 |
|
* |
178 |
|
* |
179 |
|
*/ |
180 |
|
template<typename T> |
181 |
|
void id |
182 |
|
( |
183 |
|
bool use_adaptive_ranks, bool secure_accuracy, |
184 |
|
int m, int n, int maxs, T stol, |
185 |
|
Data<T> A, |
186 |
|
vector<size_t> &skels, Data<T> &proj, vector<int> &jpvt |
187 |
|
) |
188 |
|
{ |
189 |
|
int s; |
190 |
|
int nb = 512; |
191 |
|
int lwork = 2 * n + ( n + 1 ) * nb; |
192 |
|
std::vector<T> work( lwork ); |
193 |
|
std::vector<T> tau( std::min( m, n ) ); |
194 |
|
hmlp::Data<T> S, Z; |
195 |
|
hmlp::Data<T> A_tmp = A; |
196 |
|
|
197 |
|
/** sample rows must be larger than columns */ |
198 |
|
//assert( m >= n ); |
199 |
|
|
200 |
|
// Initilize jpvt to zeros. Otherwise, GEQP3 will permute A. |
201 |
|
jpvt.clear(); |
202 |
|
jpvt.resize( n, 0 ); |
203 |
|
|
204 |
|
/** Traditional pivoting QR (GEQP3) */ |
205 |
|
//#ifdef HMLP_USE_CUDA |
206 |
|
// auto *dev = hmlp_get_device( 0 ); |
207 |
|
// cublasHandle_t &handle = |
208 |
|
// reinterpret_cast<hmlp::gpu::Nvidia*>( dev )->gethandle( 0 ); |
209 |
|
// hmlp::xgeqp3 |
210 |
|
// ( |
211 |
|
// handle, |
212 |
|
// m, n, |
213 |
|
// A_tmp.data(), m, |
214 |
|
// jpvt.data(), |
215 |
|
// tau.data(), |
216 |
|
// work.data(), lwork |
217 |
|
// ); |
218 |
|
//#else |
219 |
|
hmlp::xgeqp4 |
220 |
|
//hmlp::xgeqp3 |
221 |
|
( |
222 |
|
m, n, |
223 |
|
A_tmp.data(), m, |
224 |
|
jpvt.data(), |
225 |
|
tau.data(), |
226 |
|
work.data(), lwork |
227 |
|
); |
228 |
|
//#endif |
229 |
|
//printf( "end xgeqp3\n" ); |
230 |
|
|
231 |
|
/** shift jpvt from 1-base to 0-base index. */ |
232 |
|
for ( int j = 0; j < jpvt.size(); j ++ ) jpvt[ j ] = jpvt[ j ] - 1; |
233 |
|
|
234 |
|
/** search for rank 1 <= s <= maxs that satisfies the error tolerance */ |
235 |
|
for ( s = 1; s < n; s ++ ) |
236 |
|
{ |
237 |
|
if ( s > maxs || std::abs( A_tmp[ s * m + s ] ) < stol ) break; |
238 |
|
//if ( s > maxs || std::abs( A_tmp[ s * m + s ] ) / std::abs( A_tmp[ 0 ] ) < stol ) break; |
239 |
|
} |
240 |
|
|
241 |
|
/** If using fixed rank, then */ |
242 |
|
if ( !use_adaptive_ranks ) s = std::min( maxs, n ); |
243 |
|
|
244 |
|
/** Failed to satisfy error tolerance. */ |
245 |
|
if ( s > maxs ) |
246 |
|
{ |
247 |
|
//if ( LEVELRESTRICTION ) /** abort */ |
248 |
|
if ( secure_accuracy ) /** abort */ |
249 |
|
{ |
250 |
|
skels.clear(); |
251 |
|
proj.resize( 0, 0 ); |
252 |
|
jpvt.resize( 0 ); |
253 |
|
return; |
254 |
|
} |
255 |
|
else /** Continue with rank maxs */ |
256 |
|
{ |
257 |
|
s = maxs; |
258 |
|
} |
259 |
|
} |
260 |
|
|
261 |
|
/** now #skeleton has been decided, resize skels to fit */ |
262 |
|
skels.resize( s ); |
263 |
|
for ( int j = 0; j < skels.size(); j ++ ) skels[ j ] = jpvt[ j ]; |
264 |
|
|
265 |
|
|
266 |
|
// TODO: Here we only need several things to get rid of xgels. |
267 |
|
// |
268 |
|
// 0. R11 = zeros( s ) |
269 |
|
// 1. get R11 = up_tiangular( A_tmp( 1:s, 1:s ) ) |
270 |
|
// 2. get proj( 1:s, jpvt( 1:n ) ) = A_tmp( 1:s 1:n ) |
271 |
|
// 3. xtrsm( "L", "U", "N", "N", s, n, 1.0, R11.data(), s, proj.data(), s ) |
272 |
|
|
273 |
|
|
274 |
|
/** extract proj. It will be computed in Interpolate. */ |
275 |
|
if ( true ) |
276 |
|
{ |
277 |
|
/** fill in proj */ |
278 |
|
proj.clear(); |
279 |
|
proj.resize( s, n, 0.0 ); |
280 |
|
|
281 |
|
for ( int j = 0; j < n; j ++ ) |
282 |
|
{ |
283 |
|
for ( int i = 0; i < s; i ++ ) |
284 |
|
{ |
285 |
|
if ( j < s ) |
286 |
|
{ |
287 |
|
if ( j >= i ) proj[ j * s + i ] = A_tmp[ j * m + i ]; |
288 |
|
else proj[ j * s + i ] = 0.0; |
289 |
|
} |
290 |
|
else |
291 |
|
{ |
292 |
|
proj[ j * s + i ] = A_tmp[ j * m + i ]; |
293 |
|
} |
294 |
|
} |
295 |
|
} |
296 |
|
} |
297 |
|
else /** in the old version we use xgels, which is expensive */ |
298 |
|
{ |
299 |
|
Z.resize( m, skels.size() ); |
300 |
|
|
301 |
|
for ( int j = 0; j < skels.size(); j ++ ) |
302 |
|
{ |
303 |
|
for ( int i = 0; i < m; i ++ ) |
304 |
|
{ |
305 |
|
Z[ j * m + i ] = A[ skels[ j ] * m + i ]; |
306 |
|
} |
307 |
|
} |
308 |
|
auto A_skel = Z; |
309 |
|
|
310 |
|
S = A; |
311 |
|
// P (overwrite S) = pseudo-inverse( Z ) * S |
312 |
|
hmlp::xgels |
313 |
|
( |
314 |
|
"N", |
315 |
|
m, skels.size(), n, |
316 |
|
Z.data(), m, |
317 |
|
S.data(), m, |
318 |
|
work.data(), lwork |
319 |
|
); |
320 |
|
|
321 |
|
// Fill in proj |
322 |
|
proj.resize( skels.size(), n ); |
323 |
|
for ( int j = 0; j < n; j ++ ) |
324 |
|
{ |
325 |
|
for ( int i = 0; i < skels.size(); i ++ ) |
326 |
|
{ |
327 |
|
proj[ j * skels.size() + i ] = S[ j * m + i ]; |
328 |
|
} |
329 |
|
} |
330 |
|
|
331 |
|
#ifdef DEBUG_SKEL |
332 |
|
double nrm = hmlp_norm( m, n, A.data(), m ); |
333 |
|
|
334 |
|
hmlp::xgemm |
335 |
|
( |
336 |
|
"N", "N", |
337 |
|
m, n, skels.size(), |
338 |
|
-1.0, A_skel.data(), m, |
339 |
|
S.data(), m, |
340 |
|
1.0, A.data(), m |
341 |
|
); |
342 |
|
|
343 |
|
double err = hmlp_norm( m, n, A.data(), m ); |
344 |
|
printf( "m %d n %d k %lu absolute l2 error %E related l2 error %E\n", |
345 |
|
m, n, skels.size(), |
346 |
|
err, err / nrm ); |
347 |
|
#endif |
348 |
|
|
349 |
|
} |
350 |
|
|
351 |
|
}; // end id() |
352 |
|
|
353 |
|
|
354 |
|
|
355 |
|
/** |
356 |
|
* @brief |
357 |
|
*/ |
358 |
|
template<bool ONESHOT = false,typename T> |
359 |
|
void nystrom( size_t m, size_t n, size_t r, |
360 |
|
std::vector<T> &A, std::vector<T> &C, |
361 |
|
std::vector<T> &U, std::vector<T> &V ) |
362 |
|
{ |
363 |
|
/** if C is not initialized, then sample from A */ |
364 |
|
if ( C.size() != r * r ) |
365 |
|
{ |
366 |
|
/** uniform sampling */ |
367 |
|
|
368 |
|
} |
369 |
|
else |
370 |
|
{ |
371 |
|
/** compute the pseudo-inverse of C using SVD */ |
372 |
|
} |
373 |
|
|
374 |
|
/** output an approximate */ |
375 |
|
if ( ONESHOT ) |
376 |
|
{ |
377 |
|
} |
378 |
|
|
379 |
|
|
380 |
|
}; /** end nystrom() */ |
381 |
|
|
382 |
|
|
383 |
|
|
384 |
|
|
385 |
|
|
386 |
|
template<typename T> |
387 |
|
void pmid |
388 |
|
( |
389 |
|
int m, |
390 |
|
int n, |
391 |
|
int maxs, |
392 |
|
std::vector<T> A, |
393 |
|
std::vector<int> &jpiv, std::vector<T> &P |
394 |
|
) |
395 |
|
{ |
396 |
|
int rank = maxs + 10; |
397 |
|
int lwork = 512 * n; |
398 |
|
|
399 |
|
printf( "maxs %d\n", maxs ); |
400 |
|
|
401 |
|
if ( rank > n ) rank = n; |
402 |
|
|
403 |
|
|
404 |
|
std::vector<T> S = A; |
405 |
|
std::vector<T> O( n * rank ); |
406 |
|
std::vector<T> Z( m * rank ); |
407 |
|
std::vector<T> tau( std::min( m, n ), 0.0 ); |
408 |
|
std::vector<T> work( lwork, 0.0 ); |
409 |
|
|
410 |
|
std::default_random_engine generator; |
411 |
|
std::normal_distribution<T> gaussian( 0.0, 1.0 ); |
412 |
|
|
413 |
|
// generate O n-by-(maxs+10) random matrix (need to be Gaussian samples) |
414 |
|
#pragma omp parallel for |
415 |
|
for ( int i = 0; i < n * rank; i ++ ) |
416 |
|
{ |
417 |
|
O[ i ] = gaussian( generator ); |
418 |
|
} |
419 |
|
|
420 |
|
#ifdef DEBUG_SKEL |
421 |
|
printf( "O\n" ); |
422 |
|
hmlp_printmatrix( n, rank, O.data(), n ); |
423 |
|
printf( "A\n" ); |
424 |
|
hmlp_printmatrix( m, n, A.data(), m ); |
425 |
|
#endif |
426 |
|
|
427 |
|
|
428 |
|
// Z = 0.0 * Z + 1.0 * A * O |
429 |
|
hmlp::xgemm |
430 |
|
( |
431 |
|
"N", "N", |
432 |
|
m, rank, n, |
433 |
|
1.0, A.data(), m, |
434 |
|
O.data(), n, |
435 |
|
0.0, Z.data(), m |
436 |
|
); |
437 |
|
printf( "here xgemm\n" ); |
438 |
|
|
439 |
|
|
440 |
|
#ifdef DEBUG_SKEL |
441 |
|
printf( "Z\n" ); |
442 |
|
hmlp_printmatrix( m, rank, Z.data(), m ); |
443 |
|
#endif |
444 |
|
|
445 |
|
|
446 |
|
|
447 |
|
|
448 |
|
|
449 |
|
|
450 |
|
// [Q,~] = qr(Z,0), so I need the orthogonal matrix |
451 |
|
hmlp::xgeqrf |
452 |
|
( |
453 |
|
m, rank, |
454 |
|
Z.data(), m, |
455 |
|
tau.data(), |
456 |
|
work.data(), lwork |
457 |
|
); |
458 |
|
printf( "here xgeqrf\n" ); |
459 |
|
|
460 |
|
#ifdef DEBUG_SKEL |
461 |
|
printf( "Z\n" ); |
462 |
|
hmlp_printmatrix( m, rank, Z.data(), m ); |
463 |
|
#endif |
464 |
|
|
465 |
|
// S = Q' * A |
466 |
|
hmlp::xormqr |
467 |
|
( |
468 |
|
"L", "T", |
469 |
|
m, n, rank, |
470 |
|
Z.data(), m, |
471 |
|
tau.data(), |
472 |
|
S.data(), m, |
473 |
|
work.data(), lwork |
474 |
|
); |
475 |
|
printf( "here xormqr\n" ); |
476 |
|
|
477 |
|
|
478 |
|
for ( int i = 0; i < rank; i ++ ) |
479 |
|
{ |
480 |
|
for ( int j = 0; j < n; j ++ ) |
481 |
|
{ |
482 |
|
S[ j * m + i ] = fabs( S[ j * m + i ] ); |
483 |
|
} |
484 |
|
} |
485 |
|
|
486 |
|
|
487 |
|
|
488 |
|
|
489 |
|
|
490 |
|
|
491 |
|
// abs( S(1:rank,1:n) ) and select the largest entry per row. |
492 |
|
while ( jpiv.size() < maxs ) |
493 |
|
{ |
494 |
|
for ( int i = 0; i < rank; i ++ ) |
495 |
|
{ |
496 |
|
std::pair<T,int> pivot( 0.0, -1 ); |
497 |
|
|
498 |
|
for ( int j = 0; j < n; j ++ ) |
499 |
|
{ |
500 |
|
if ( S[ j * m + i ] > pivot.first ) |
501 |
|
{ |
502 |
|
pivot = std::make_pair( S[ j * m + i ], j ); |
503 |
|
} |
504 |
|
} |
505 |
|
if ( pivot.second != -1 ) |
506 |
|
{ |
507 |
|
jpiv.push_back( pivot.second ); |
508 |
|
} |
509 |
|
} |
510 |
|
|
511 |
|
std::sort( jpiv.begin(), jpiv.end() ); |
512 |
|
auto last = std::unique( jpiv.begin(), jpiv.end() ); |
513 |
|
jpiv.erase( last, jpiv.end() ); |
514 |
|
|
515 |
|
printf( "Total %lu pivots\n", jpiv.size() ); |
516 |
|
|
517 |
|
// zero out S |
518 |
|
for ( int j = 0; j < jpiv.size(); j ++ ) |
519 |
|
{ |
520 |
|
for ( int i = 0; i < rank; i ++ ) |
521 |
|
{ |
522 |
|
S[ jpiv[ j ] * m + i ] = 0.0; |
523 |
|
} |
524 |
|
} |
525 |
|
} |
526 |
|
|
527 |
|
jpiv.resize( maxs ); |
528 |
|
|
529 |
|
#ifdef DEBUG_SKEL |
530 |
|
printf( "jpjv:\n" ); |
531 |
|
for ( int j = 0; j < jpiv.size(); j ++ ) |
532 |
|
{ |
533 |
|
printf( "%12d ", jpiv[ j ] ); |
534 |
|
} |
535 |
|
#endif |
536 |
|
// std::sort( ipiv.begin(), ipiv.end() ); |
537 |
|
// auto last = std::unique( ipiv.begin(), ipiv.end() ); |
538 |
|
// ipiv.erase( last, ipiv.end() ); |
539 |
|
|
540 |
|
// printf( "Total %lu pivots\n", ipiv.size() ); |
541 |
|
|
542 |
|
|
543 |
|
|
544 |
|
|
545 |
|
|
546 |
|
Z.resize( m * jpiv.size() ); |
547 |
|
|
548 |
|
for ( int j = 0; j < jpiv.size(); j ++ ) |
549 |
|
{ |
550 |
|
// reuse Z |
551 |
|
for ( int i = 0; i < m; i ++ ) |
552 |
|
{ |
553 |
|
Z[ j * m + i ] = A[ jpiv[ j ] * m + i ]; |
554 |
|
} |
555 |
|
} |
556 |
|
auto A_skel = Z; |
557 |
|
//P.resize( ipiv.size() * n ); |
558 |
|
|
559 |
|
|
560 |
|
#ifdef DEBUG_SKEL |
561 |
|
printf( "jpjv:\n" ); |
562 |
|
for ( int j = 0; j < jpiv.size(); j ++ ) |
563 |
|
{ |
564 |
|
printf( "%12d ", jpiv[ j ] ); |
565 |
|
} |
566 |
|
printf( "\n" ); |
567 |
|
printf( "Z = [\n" ); |
568 |
|
hmlp_printmatrix( m, jpiv.size(), Z.data(), m ); |
569 |
|
#endif |
570 |
|
|
571 |
|
|
572 |
|
S = A; |
573 |
|
// P (overwrite S) = pseudo-inverse( Z ) * S |
574 |
|
hmlp::xgels |
575 |
|
( |
576 |
|
"N", |
577 |
|
m, jpiv.size(), n, |
578 |
|
Z.data(), m, |
579 |
|
S.data(), m, |
580 |
|
work.data(), lwork |
581 |
|
); |
582 |
|
|
583 |
|
|
584 |
|
#ifdef DEBUG_SKEL |
585 |
|
printf( "S\n" ); |
586 |
|
hmlp_printmatrix<true, true>( m, n, S.data(), m ); |
587 |
|
|
588 |
|
double nrm = hmlp_norm( m, n, A.data(), m ); |
589 |
|
|
590 |
|
hmlp::xgemm |
591 |
|
( |
592 |
|
"N", "N", |
593 |
|
m, n, jpiv.size(), |
594 |
|
-1.0, A_skel.data(), m, |
595 |
|
S.data(), m, |
596 |
|
1.0, A.data(), m |
597 |
|
); |
598 |
|
|
599 |
|
double err = hmlp_norm( m, n, A.data(), m ); |
600 |
|
|
601 |
|
printf( "absolute l2 error %E related l2 error %E\n", err, err / nrm ); |
602 |
|
#endif |
603 |
|
|
604 |
|
|
605 |
|
#ifdef DEBUG_SKEL |
606 |
|
printf( "A\n" ); |
607 |
|
hmlp_printmatrix<true, true>( m, n, A.data(), m ); |
608 |
|
#endif |
609 |
|
|
610 |
|
}; // end pmid() |
611 |
|
|
612 |
|
template<class Node> |
613 |
|
void skeletonize( Node *node ) |
614 |
|
{ |
615 |
|
auto lchild = node->lchild; |
616 |
|
auto rchild = node->rchild; |
617 |
|
|
618 |
|
// random sampling or important sampling for rows. |
619 |
|
std::vector<size_t> amap; |
620 |
|
|
621 |
|
std::vector<size_t> bmap; |
622 |
|
|
623 |
|
//bmap = lchild |
624 |
|
|
625 |
|
|
626 |
|
printf( "id %d l %d n %d\n", node->treelist_id, node->l, node->n ); |
627 |
|
|
628 |
|
}; // end skeletonize() |
629 |
|
|
630 |
|
|
631 |
|
|
632 |
|
|
633 |
|
//template<typename CONTEXT> |
634 |
|
//class Task : public hmlp::Task |
635 |
|
//{ |
636 |
|
// public: |
637 |
|
// |
638 |
|
// /* function ptr */ |
639 |
|
// void (*function)(Task<CONTEXT>*); |
640 |
|
// |
641 |
|
// /* argument ptr */ |
642 |
|
// CONTEXT *arg; |
643 |
|
// |
644 |
|
// void Set( CONTEXT *user_arg ) |
645 |
|
// { |
646 |
|
// name = std::string( "Skeletonization" ); |
647 |
|
// arg = user_arg; |
648 |
|
// } |
649 |
|
// |
650 |
|
// void Execute( Worker* user_worker ) |
651 |
|
// { |
652 |
|
// printf( "SkeletonizeTask Execute 2\n" ); |
653 |
|
// } |
654 |
|
// |
655 |
|
// private: |
656 |
|
// |
657 |
|
//}; // end class Task |
658 |
|
|
659 |
|
//template<class Node> |
660 |
|
//class Task : public Task |
661 |
|
//{ |
662 |
|
// public: |
663 |
|
// |
664 |
|
// Node *arg; |
665 |
|
// |
666 |
|
// void Set( Node *user_arg ) |
667 |
|
// { |
668 |
|
// name = std::string( "Skeletonization" ); |
669 |
|
// arg = user_arg; |
670 |
|
// }; |
671 |
|
// |
672 |
|
// void Execute( Worker* user_worker ) |
673 |
|
// { |
674 |
|
// //printf( "SkeletonizeTask Execute 2\n" ); |
675 |
|
// skeletonize( arg ); |
676 |
|
// }; |
677 |
|
// |
678 |
|
// private: |
679 |
|
//}; |
680 |
|
|
681 |
|
|
682 |
|
|
683 |
|
|
684 |
|
|
685 |
|
|
686 |
|
|
687 |
|
}; /** end namespace lowrank */ |
688 |
|
}; /** end namespace hmlp */ |
689 |
|
|
690 |
|
#endif // define LOWRANK_HPP |