1 |
|
/** |
2 |
|
* HMLP (High-Performance Machine Learning Primitives) |
3 |
|
* |
4 |
|
* Copyright (C) 2014-2017, The University of Texas at Austin |
5 |
|
* |
6 |
|
* This program is free software: you can redistribute it and/or modify |
7 |
|
* it under the terms of the GNU General Public License as published by |
8 |
|
* the Free Software Foundation, either version 3 of the License, or |
9 |
|
* (at your option) any later version. |
10 |
|
* |
11 |
|
* This program is distributed in the hope that it will be useful, |
12 |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 |
|
* GNU General Public License for more details. |
15 |
|
* |
16 |
|
* You should have received a copy of the GNU General Public License |
17 |
|
* along with this program. If not, see the LICENSE file. |
18 |
|
* |
19 |
|
**/ |
20 |
|
|
21 |
|
|
22 |
|
#ifndef MPITREE_HPP |
23 |
|
#define MPITREE_HPP |
24 |
|
|
25 |
|
/** Inherit most of the classes from shared-memory GOFMM. */ |
26 |
|
#include <tree.hpp> |
27 |
|
/** Use distributed matrices inspired by the Elemental notation. */ |
28 |
|
//#include <DistData.hpp> |
29 |
|
/** Use STL and HMLP namespaces. */ |
30 |
|
using namespace std; |
31 |
|
using namespace hmlp; |
32 |
|
|
33 |
|
|
34 |
|
namespace hmlp |
35 |
|
{ |
36 |
|
namespace mpitree |
37 |
|
{ |
38 |
|
|
39 |
|
|
40 |
|
|
41 |
|
///** |
42 |
|
// * @brief This is the default ball tree splitter. Given coordinates, |
43 |
|
// * compute the direction from the two most far away points. |
44 |
|
// * Project all points to this line and split into two groups |
45 |
|
// * using a median select. |
46 |
|
// * |
47 |
|
// * @para |
48 |
|
// * |
49 |
|
// * @TODO Need to explit the parallelism. |
50 |
|
// */ |
51 |
|
//template<int N_SPLIT, typename T> |
52 |
|
//struct centersplit |
53 |
|
//{ |
54 |
|
// // closure |
55 |
|
// Data<T> *Coordinate; |
56 |
|
// |
57 |
|
// inline vector<vector<size_t> > operator() |
58 |
|
// ( |
59 |
|
// vector<size_t>& gids |
60 |
|
// ) const |
61 |
|
// { |
62 |
|
// assert( N_SPLIT == 2 ); |
63 |
|
// |
64 |
|
// Data<T> &X = *Coordinate; |
65 |
|
// size_t d = X.row(); |
66 |
|
// size_t n = gids.size(); |
67 |
|
// |
68 |
|
// T rcx0 = 0.0, rx01 = 0.0; |
69 |
|
// size_t x0, x1; |
70 |
|
// vector<vector<size_t> > split( N_SPLIT ); |
71 |
|
// |
72 |
|
// |
73 |
|
// vector<T> centroid = combinatorics::Mean( d, n, X, gids ); |
74 |
|
// vector<T> direction( d ); |
75 |
|
// vector<T> projection( n, 0.0 ); |
76 |
|
// |
77 |
|
// //printf( "After Mean\n" ); |
78 |
|
// |
79 |
|
// // Compute the farest x0 point from the centroid |
80 |
|
// for ( int i = 0; i < n; i ++ ) |
81 |
|
// { |
82 |
|
// T rcx = 0.0; |
83 |
|
// for ( int p = 0; p < d; p ++ ) |
84 |
|
// { |
85 |
|
// T tmp = X[ gids[ i ] * d + p ] - centroid[ p ]; |
86 |
|
// rcx += tmp * tmp; |
87 |
|
// } |
88 |
|
// //printf( "\n" ); |
89 |
|
// if ( rcx > rcx0 ) |
90 |
|
// { |
91 |
|
// rcx0 = rcx; |
92 |
|
// x0 = i; |
93 |
|
// } |
94 |
|
// } |
95 |
|
// |
96 |
|
// |
97 |
|
// // Compute the farest point x1 from x0 |
98 |
|
// for ( int i = 0; i < n; i ++ ) |
99 |
|
// { |
100 |
|
// T rxx = 0.0; |
101 |
|
// for ( int p = 0; p < d; p ++ ) |
102 |
|
// { |
103 |
|
// T tmp = X[ gids[ i ] * d + p ] - X[ gids[ x0 ] * d + p ]; |
104 |
|
// rxx += tmp * tmp; |
105 |
|
// } |
106 |
|
// if ( rxx > rx01 ) |
107 |
|
// { |
108 |
|
// rx01 = rxx; |
109 |
|
// x1 = i; |
110 |
|
// } |
111 |
|
// } |
112 |
|
// |
113 |
|
// // Compute direction |
114 |
|
// for ( int p = 0; p < d; p ++ ) |
115 |
|
// { |
116 |
|
// direction[ p ] = X[ gids[ x1 ] * d + p ] - X[ gids[ x0 ] * d + p ]; |
117 |
|
// } |
118 |
|
// |
119 |
|
// // Compute projection |
120 |
|
// projection.resize( n, 0.0 ); |
121 |
|
// for ( int i = 0; i < n; i ++ ) |
122 |
|
// for ( int p = 0; p < d; p ++ ) |
123 |
|
// projection[ i ] += X[ gids[ i ] * d + p ] * direction[ p ]; |
124 |
|
// |
125 |
|
// /** Parallel median search */ |
126 |
|
// T median; |
127 |
|
// |
128 |
|
// if ( 1 ) |
129 |
|
// { |
130 |
|
// median = hmlp::combinatorics::Select( n, n / 2, projection ); |
131 |
|
// } |
132 |
|
// else |
133 |
|
// { |
134 |
|
// auto proj_copy = projection; |
135 |
|
// std::sort( proj_copy.begin(), proj_copy.end() ); |
136 |
|
// median = proj_copy[ n / 2 ]; |
137 |
|
// } |
138 |
|
// |
139 |
|
// split[ 0 ].reserve( n / 2 + 1 ); |
140 |
|
// split[ 1 ].reserve( n / 2 + 1 ); |
141 |
|
// |
142 |
|
// |
143 |
|
// /** TODO: Can be parallelized */ |
144 |
|
// std::vector<std::size_t> middle; |
145 |
|
// for ( size_t i = 0; i < n; i ++ ) |
146 |
|
// { |
147 |
|
// if ( projection[ i ] < median ) split[ 0 ].push_back( i ); |
148 |
|
// else if ( projection[ i ] > median ) split[ 1 ].push_back( i ); |
149 |
|
// else middle.push_back( i ); |
150 |
|
// } |
151 |
|
// |
152 |
|
// for ( size_t i = 0; i < middle.size(); i ++ ) |
153 |
|
// { |
154 |
|
// if ( split[ 0 ].size() <= split[ 1 ].size() ) split[ 0 ].push_back( middle[ i ] ); |
155 |
|
// else split[ 1 ].push_back( middle[ i ] ); |
156 |
|
// } |
157 |
|
// |
158 |
|
// |
159 |
|
// return split; |
160 |
|
// }; |
161 |
|
// |
162 |
|
// |
163 |
|
// inline std::vector<std::vector<size_t> > operator() |
164 |
|
// ( |
165 |
|
// std::vector<size_t>& gids, |
166 |
|
// hmlp::mpi::Comm comm |
167 |
|
// ) const |
168 |
|
// { |
169 |
|
// std::vector<std::vector<size_t> > split( N_SPLIT ); |
170 |
|
// |
171 |
|
// return split; |
172 |
|
// }; |
173 |
|
// |
174 |
|
//}; |
175 |
|
// |
176 |
|
// |
177 |
|
// |
178 |
|
// |
179 |
|
// |
180 |
|
//template<int N_SPLIT, typename T> |
181 |
|
//struct randomsplit |
182 |
|
//{ |
183 |
|
// Data<T> *Coordinate = NULL; |
184 |
|
// |
185 |
|
// inline vector<vector<size_t> > operator() ( vector<size_t>& gids ) const |
186 |
|
// { |
187 |
|
// vector<vector<size_t> > split( N_SPLIT ); |
188 |
|
// return split; |
189 |
|
// }; |
190 |
|
// |
191 |
|
// inline vector<vector<size_t> > operator() ( vector<size_t>& gids, mpi::Comm comm ) const |
192 |
|
// { |
193 |
|
// vector<vector<size_t> > split( N_SPLIT ); |
194 |
|
// return split; |
195 |
|
// }; |
196 |
|
//}; |
197 |
|
// |
198 |
|
|
199 |
|
|
200 |
|
|
201 |
|
|
202 |
|
|
203 |
|
template<typename NODE> |
204 |
|
class DistSplitTask : public Task |
205 |
|
{ |
206 |
|
public: |
207 |
|
|
208 |
|
NODE *arg = NULL; |
209 |
|
|
210 |
|
void Set( NODE *user_arg ) |
211 |
|
{ |
212 |
|
arg = user_arg; |
213 |
|
name = string( "DistSplit" ); |
214 |
|
label = to_string( arg->treelist_id ); |
215 |
|
|
216 |
|
double flops = 6.0 * arg->n; |
217 |
|
double mops = 6.0 * arg->n; |
218 |
|
|
219 |
|
/** Setup the event */ |
220 |
|
event.Set( label + name, flops, mops ); |
221 |
|
/** Asuume computation bound */ |
222 |
|
cost = mops / 1E+9; |
223 |
|
/** "HIGH" priority */ |
224 |
|
priority = true; |
225 |
|
}; |
226 |
|
|
227 |
|
|
228 |
|
void DependencyAnalysis() |
229 |
|
{ |
230 |
|
arg->DependencyAnalysis( R, this ); |
231 |
|
|
232 |
|
if ( !arg->isleaf ) |
233 |
|
{ |
234 |
|
if ( arg->GetCommSize() > 1 ) |
235 |
|
{ |
236 |
|
assert( arg->child ); |
237 |
|
arg->child->DependencyAnalysis( RW, this ); |
238 |
|
} |
239 |
|
else |
240 |
|
{ |
241 |
|
assert( arg->lchild && arg->rchild ); |
242 |
|
arg->lchild->DependencyAnalysis( RW, this ); |
243 |
|
arg->rchild->DependencyAnalysis( RW, this ); |
244 |
|
} |
245 |
|
} |
246 |
|
this->TryEnqueue(); |
247 |
|
}; |
248 |
|
|
249 |
|
void Execute( Worker* user_worker ) { arg->Split(); }; |
250 |
|
|
251 |
|
}; /** end class DistSplitTask */ |
252 |
|
|
253 |
|
|
254 |
|
|
255 |
|
|
256 |
|
/** |
257 |
|
* @brief Data and setup that are shared with all nodes. |
258 |
|
*/ |
259 |
|
template<typename SPLITTER, typename DATATYPE> |
260 |
|
class Setup |
261 |
|
{ |
262 |
|
public: |
263 |
|
|
264 |
|
typedef DATATYPE T; |
265 |
|
|
266 |
|
Setup() {}; |
267 |
|
|
268 |
|
~Setup() {}; |
269 |
|
|
270 |
|
|
271 |
|
|
272 |
|
|
273 |
|
/** |
274 |
|
* @brief Check if this node contain any query using morton. |
275 |
|
* Notice that queries[] contains gids; thus, morton[] |
276 |
|
* needs to be accessed using gids. |
277 |
|
* |
278 |
|
*/ |
279 |
|
vector<size_t> ContainAny( vector<size_t> &queries, size_t target ) |
280 |
|
{ |
281 |
|
vector<size_t> validation( queries.size(), 0 ); |
282 |
|
|
283 |
|
if ( !morton.size() ) |
284 |
|
{ |
285 |
|
printf( "Morton id was not initialized.\n" ); |
286 |
|
exit( 1 ); |
287 |
|
} |
288 |
|
|
289 |
|
for ( size_t i = 0; i < queries.size(); i ++ ) |
290 |
|
{ |
291 |
|
/** notice that setup->morton only contains local morton ids */ |
292 |
|
//auto it = this->setup->morton.find( queries[ i ] ); |
293 |
|
|
294 |
|
//if ( it != this->setup->morton.end() ) |
295 |
|
//{ |
296 |
|
// if ( tree::IsMyParent( *it, this->morton ) ) validation[ i ] = 1; |
297 |
|
//} |
298 |
|
|
299 |
|
|
300 |
|
if ( MortonHelper::IsMyParent( morton[ queries[ i ] ], target ) ) |
301 |
|
validation[ i ] = 1; |
302 |
|
|
303 |
|
} |
304 |
|
return validation; |
305 |
|
|
306 |
|
}; /** end ContainAny() */ |
307 |
|
|
308 |
|
|
309 |
|
|
310 |
|
|
311 |
|
/** maximum leaf node size */ |
312 |
|
size_t m; |
313 |
|
|
314 |
|
/** by default we use 4 bits = 0-15 levels */ |
315 |
|
size_t max_depth = 15; |
316 |
|
|
317 |
|
/** coordinates (accessed with gids) */ |
318 |
|
//DistData<STAR, CBLK, T> *X_cblk = NULL; |
319 |
|
//DistData<STAR, CIDS, T> *X = NULL; |
320 |
|
|
321 |
|
/** neighbors<distance, gid> (accessed with gids) */ |
322 |
|
DistData<STAR, CBLK, pair<T, size_t>> *NN_cblk = NULL; |
323 |
|
DistData<STAR, CIDS, pair<T, size_t>> *NN = NULL; |
324 |
|
|
325 |
|
/** morton ids */ |
326 |
|
vector<size_t> morton; |
327 |
|
|
328 |
|
/** tree splitter */ |
329 |
|
SPLITTER splitter; |
330 |
|
|
331 |
|
}; /** end class Setup */ |
332 |
|
|
333 |
|
|
334 |
|
|
335 |
|
template<typename NODE> |
336 |
|
class DistIndexPermuteTask : public Task |
337 |
|
{ |
338 |
|
public: |
339 |
|
|
340 |
|
NODE *arg = NULL; |
341 |
|
|
342 |
|
void Set( NODE *user_arg ) |
343 |
|
{ |
344 |
|
name = std::string( "Permutation" ); |
345 |
|
arg = user_arg; |
346 |
|
// Need an accurate cost model. |
347 |
|
cost = 1.0; |
348 |
|
}; |
349 |
|
|
350 |
|
void DependencyAnalysis() { arg->DependOnChildren( this ); }; |
351 |
|
//{ |
352 |
|
// arg->DependencyAnalysis( hmlp::ReadWriteType::RW, this ); |
353 |
|
// if ( !arg->isleaf && !arg->child ) |
354 |
|
// { |
355 |
|
// arg->lchild->DependencyAnalysis( hmlp::ReadWriteType::R, this ); |
356 |
|
// arg->rchild->DependencyAnalysis( hmlp::ReadWriteType::R, this ); |
357 |
|
// } |
358 |
|
// this->TryEnqueue(); |
359 |
|
//}; |
360 |
|
|
361 |
|
|
362 |
|
void Execute( Worker* user_worker ) |
363 |
|
{ |
364 |
|
if ( !arg->isleaf && !arg->child ) |
365 |
|
{ |
366 |
|
auto &gids = arg->gids; |
367 |
|
auto &lgids = arg->lchild->gids; |
368 |
|
auto &rgids = arg->rchild->gids; |
369 |
|
gids = lgids; |
370 |
|
gids.insert( gids.end(), rgids.begin(), rgids.end() ); |
371 |
|
} |
372 |
|
}; |
373 |
|
|
374 |
|
}; /** end class IndexPermuteTask */ |
375 |
|
|
376 |
|
|
377 |
|
|
378 |
|
|
379 |
|
|
380 |
|
|
381 |
|
|
382 |
|
|
383 |
|
|
384 |
|
|
385 |
|
|
386 |
|
|
387 |
|
|
388 |
|
|
389 |
|
|
390 |
|
|
391 |
|
/** |
392 |
|
* |
393 |
|
*/ |
394 |
|
//template<typename SETUP, int N_CHILDREN, typename NODEDATA> |
395 |
|
template<typename SETUP, typename NODEDATA> |
396 |
|
class Node : public tree::Node<SETUP, NODEDATA> |
397 |
|
{ |
398 |
|
public: |
399 |
|
|
400 |
|
/** Deduce data type from SETUP. */ |
401 |
|
typedef typename SETUP::T T; |
402 |
|
|
403 |
|
static const int N_CHILDREN = 2; |
404 |
|
|
405 |
|
/** Inherit all parameters from tree::Node */ |
406 |
|
|
407 |
|
|
408 |
|
/** (Default) constructor for inner nodes (gids and n unassigned) */ |
409 |
|
Node( SETUP *setup, size_t n, size_t l, |
410 |
|
Node *parent, |
411 |
|
unordered_map<size_t, tree::Node<SETUP, NODEDATA>*> *morton2node, |
412 |
|
Lock *treelock, mpi::Comm comm ) |
413 |
|
: tree::Node<SETUP, NODEDATA>( setup, n, l, |
414 |
|
parent, morton2node, treelock ) |
415 |
|
{ |
416 |
|
/** Local communicator */ |
417 |
|
this->comm = comm; |
418 |
|
/** Get MPI size and rank. */ |
419 |
|
mpi::Comm_size( comm, &size ); |
420 |
|
mpi::Comm_rank( comm, &rank ); |
421 |
|
}; |
422 |
|
|
423 |
|
/** (Default) constructor for root. */ |
424 |
|
Node( SETUP *setup, size_t n, size_t l, vector<size_t> &gids, |
425 |
|
Node *parent, |
426 |
|
unordered_map<size_t, tree::Node<SETUP, NODEDATA>*> *morton2node, |
427 |
|
Lock *treelock, mpi::Comm comm ) |
428 |
|
: Node<SETUP, NODEDATA>( setup, n, l, parent, |
429 |
|
morton2node, treelock, comm ) |
430 |
|
{ |
431 |
|
/** Notice that "gids.size() < n". */ |
432 |
|
this->gids = gids; |
433 |
|
}; |
434 |
|
|
435 |
|
/** (Default) constructor for LET nodes. */ |
436 |
|
Node( size_t morton ) : tree::Node<SETUP, NODEDATA>( morton ) |
437 |
|
{ |
438 |
|
}; |
439 |
|
|
440 |
|
|
441 |
|
//void SetupChild( class Node *child ) |
442 |
|
//{ |
443 |
|
// this->kids[ 0 ] = child; |
444 |
|
// this->child = child; |
445 |
|
//}; |
446 |
|
|
447 |
|
|
448 |
|
|
449 |
|
/** */ |
450 |
|
void Split() |
451 |
|
{ |
452 |
|
/** Reduce to get the total size of gids. */ |
453 |
|
int num_points_total = 0; |
454 |
|
int num_points_owned = (this->gids).size(); |
455 |
|
/** n = sum( num_points_owned ) over all MPI processes in comm. */ |
456 |
|
mpi::Allreduce( &num_points_owned, &num_points_total, 1, MPI_SUM, comm ); |
457 |
|
this->n = num_points_total; |
458 |
|
|
459 |
|
if ( child ) |
460 |
|
{ |
461 |
|
/** The local communicator of this node contains at least 2 processes. */ |
462 |
|
assert( size > 1 ); |
463 |
|
|
464 |
|
/** Invoke distributed splitter. */ |
465 |
|
auto split = this->setup->splitter( this->gids, comm ); |
466 |
|
|
467 |
|
/** Get partner MPI rank. */ |
468 |
|
int partner_rank = 0; |
469 |
|
int sent_size = 0; |
470 |
|
int recv_size = 0; |
471 |
|
vector<size_t> &kept_gids = child->gids; |
472 |
|
vector<int> sent_gids; |
473 |
|
vector<int> recv_gids; |
474 |
|
|
475 |
|
if ( rank < size / 2 ) |
476 |
|
{ |
477 |
|
/** left child */ |
478 |
|
partner_rank = rank + size / 2; |
479 |
|
/** MPI ranks 0:size/2-1 keep split[ 0 ] */ |
480 |
|
kept_gids.resize( split[ 0 ].size() ); |
481 |
|
for ( size_t i = 0; i < kept_gids.size(); i ++ ) |
482 |
|
kept_gids[ i ] = this->gids[ split[ 0 ][ i ] ]; |
483 |
|
/** MPI ranks 0:size/2-1 send split[ 1 ] */ |
484 |
|
sent_gids.resize( split[ 1 ].size() ); |
485 |
|
sent_size = sent_gids.size(); |
486 |
|
for ( size_t i = 0; i < sent_gids.size(); i ++ ) |
487 |
|
sent_gids[ i ] = this->gids[ split[ 1 ][ i ] ]; |
488 |
|
} |
489 |
|
else |
490 |
|
{ |
491 |
|
/** right child */ |
492 |
|
partner_rank = rank - size / 2; |
493 |
|
/** MPI ranks size/2:size-1 keep split[ 1 ] */ |
494 |
|
kept_gids.resize( split[ 1 ].size() ); |
495 |
|
for ( size_t i = 0; i < kept_gids.size(); i ++ ) |
496 |
|
kept_gids[ i ] = this->gids[ split[ 1 ][ i ] ]; |
497 |
|
/** MPI ranks size/2:size-1 send split[ 0 ] */ |
498 |
|
sent_gids.resize( split[ 0 ].size() ); |
499 |
|
sent_size = sent_gids.size(); |
500 |
|
for ( size_t i = 0; i < sent_gids.size(); i ++ ) |
501 |
|
sent_gids[ i ] = this->gids[ split[ 0 ][ i ] ]; |
502 |
|
} |
503 |
|
assert( partner_rank >= 0 ); |
504 |
|
|
505 |
|
|
506 |
|
|
507 |
|
|
508 |
|
|
509 |
|
///** Exchange recv_gids.size(). */ |
510 |
|
//mpi::Sendrecv( &sent_size, 1, partner_rank, 10, |
511 |
|
// &recv_size, 1, partner_rank, 10, comm, &status ); |
512 |
|
|
513 |
|
//printf( "rank %d kept_size %lu sent_size %d recv_size %d\n", |
514 |
|
// rank, kept_gids.size(), sent_size, recv_size ); fflush( stdout ); |
515 |
|
|
516 |
|
///** resize recv_gids */ |
517 |
|
//recv_gids.resize( recv_size ); |
518 |
|
|
519 |
|
///** Exchange recv_gids.size() */ |
520 |
|
//mpi::Sendrecv( |
521 |
|
// sent_gids.data(), sent_size, MPI_INT, partner_rank, 20, |
522 |
|
// recv_gids.data(), recv_size, MPI_INT, partner_rank, 20, |
523 |
|
// comm, &status ); |
524 |
|
|
525 |
|
/** Exchange gids with my partner. */ |
526 |
|
mpi::ExchangeVector( sent_gids, partner_rank, 20, |
527 |
|
recv_gids, partner_rank, 20, comm, &status ); |
528 |
|
/** kept_gids += recv_gids. */ |
529 |
|
for ( auto it : recv_gids ) kept_gids.push_back( it ); |
530 |
|
//kept_gids.reserve( kept_gids.size() + recv_gids.size() ); |
531 |
|
//for ( size_t i = 0; i < recv_gids.size(); i ++ ) |
532 |
|
// kept_gids.push_back( recv_gids[ i ] ); |
533 |
|
|
534 |
|
|
535 |
|
} |
536 |
|
else |
537 |
|
{ |
538 |
|
tree::Node<SETUP, NODEDATA>::Split(); |
539 |
|
} |
540 |
|
/** Synchronize within local communicator */ |
541 |
|
mpi::Barrier( comm ); |
542 |
|
}; /** end Split() */ |
543 |
|
|
544 |
|
|
545 |
|
/** @brief Support dependency analysis. */ |
546 |
|
void DependOnChildren( Task *task ) |
547 |
|
{ |
548 |
|
this->DependencyAnalysis( RW, task ); |
549 |
|
if ( size < 2 ) |
550 |
|
{ |
551 |
|
if ( this->lchild ) this->lchild->DependencyAnalysis( R, task ); |
552 |
|
if ( this->rchild ) this->rchild->DependencyAnalysis( R, task ); |
553 |
|
} |
554 |
|
else |
555 |
|
{ |
556 |
|
if ( child ) child->DependencyAnalysis( R, task ); |
557 |
|
} |
558 |
|
/** Try to enqueue if there is no dependency. */ |
559 |
|
task->TryEnqueue(); |
560 |
|
}; /** end DependOnChildren() */ |
561 |
|
|
562 |
|
/** @brief */ |
563 |
|
void DependOnParent( Task *task ) |
564 |
|
{ |
565 |
|
this->DependencyAnalysis( R, task ); |
566 |
|
if ( size < 2 ) |
567 |
|
{ |
568 |
|
if ( this->lchild ) this->lchild->DependencyAnalysis( RW, task ); |
569 |
|
if ( this->rchild ) this->rchild->DependencyAnalysis( RW, task ); |
570 |
|
} |
571 |
|
else |
572 |
|
{ |
573 |
|
if ( child ) child->DependencyAnalysis( RW, task ); |
574 |
|
} |
575 |
|
/** Try to enqueue if there is no dependency. */ |
576 |
|
task->TryEnqueue(); |
577 |
|
}; /** end DependOnParent() */ |
578 |
|
|
579 |
|
|
580 |
|
/** Preserve for debugging. */ |
581 |
|
void Print() {}; |
582 |
|
|
583 |
|
/** Return local MPI communicator. */ |
584 |
|
mpi::Comm GetComm() { return comm; }; |
585 |
|
/** Return local MPI size. */ |
586 |
|
int GetCommSize() { return size; }; |
587 |
|
/** Return local MPI rank. */ |
588 |
|
int GetCommRank() { return rank; }; |
589 |
|
|
590 |
|
/** Distributed tree nodes only have one child. */ |
591 |
|
Node *child = NULL; |
592 |
|
|
593 |
|
private: |
594 |
|
|
595 |
|
/** Initialize with all processes. */ |
596 |
|
mpi::Comm comm = MPI_COMM_WORLD; |
597 |
|
/** MPI status. */ |
598 |
|
mpi::Status status; |
599 |
|
/** Subcommunicator size. */ |
600 |
|
int size = 1; |
601 |
|
/** Subcommunicator rank. */ |
602 |
|
int rank = 0; |
603 |
|
|
604 |
|
}; /** end class Node */ |
605 |
|
|
606 |
|
|
607 |
|
|
608 |
|
|
609 |
|
|
610 |
|
|
611 |
|
|
612 |
|
|
613 |
|
|
614 |
|
|
615 |
|
/** |
616 |
|
* @brief This distributed tree inherits the shared memory tree |
617 |
|
* with some additional MPI data structure and function call. |
618 |
|
*/ |
619 |
|
template<class SETUP, class NODEDATA> |
620 |
|
class Tree : public tree::Tree<SETUP, NODEDATA>, |
621 |
|
public mpi::MPIObject |
622 |
|
{ |
623 |
|
public: |
624 |
|
|
625 |
|
typedef typename SETUP::T T; |
626 |
|
|
627 |
|
/** |
628 |
|
* Inherit parameters n, m, and depth; local treelists and morton2node map. |
629 |
|
* |
630 |
|
* Explanation for the morton2node map in the distributed tree: |
631 |
|
* |
632 |
|
* morton2node has type map<size_t, tree::Node>, but it actually contains |
633 |
|
* "three" different kinds of tree nodes. |
634 |
|
* |
635 |
|
* 1. Local tree nodes (exactly in type tree::Node) |
636 |
|
* |
637 |
|
* 2. Distributed tree nodes (in type mpitree::Node) |
638 |
|
* |
639 |
|
* 3. Local essential nodes (in type tree::Node with essential data) |
640 |
|
* |
641 |
|
*/ |
642 |
|
|
643 |
|
/** |
644 |
|
* Define local tree node type as NODE. Notice that all pointers in the |
645 |
|
* interaction lists and morton2node map will be in this type. |
646 |
|
*/ |
647 |
|
typedef tree::Node<SETUP, NODEDATA> NODE; |
648 |
|
|
649 |
|
/** Define distributed tree node type as MPINODE. */ |
650 |
|
typedef Node<SETUP, NODEDATA> MPINODE; |
651 |
|
|
652 |
|
/** |
653 |
|
* Distribued tree nodes in the top-down order. Notice thay |
654 |
|
* mpitreelist.back() is the root of the local tree. |
655 |
|
* |
656 |
|
* i.e. mpitrelist.back() == treelist.front(); |
657 |
|
*/ |
658 |
|
vector<MPINODE*> mpitreelists; |
659 |
|
|
660 |
|
|
661 |
|
/** (Default) Tree constructor */ |
662 |
|
Tree( mpi::Comm comm ) : tree::Tree<SETUP, NODEDATA>::Tree(), |
663 |
|
mpi::MPIObject( comm ) |
664 |
|
{ |
665 |
|
//this->comm = comm; |
666 |
|
/** Get size and rank */ |
667 |
|
//mpi::Comm_size( comm, &size ); |
668 |
|
//mpi::Comm_rank( comm, &rank ); |
669 |
|
/** Create a ReadWrite object per rank */ |
670 |
|
//NearRecvFrom.resize( size ); |
671 |
|
NearRecvFrom.resize( this->GetCommSize() ); |
672 |
|
//FarRecvFrom.resize( size ); |
673 |
|
FarRecvFrom.resize( this->GetCommSize() ); |
674 |
|
}; |
675 |
|
|
676 |
|
/** (Default) Tree destructor. */ |
677 |
|
~Tree() |
678 |
|
{ |
679 |
|
//printf( "~Tree() distributed, mpitreelists.size() %lu\n", |
680 |
|
// mpitreelists.size() ); fflush( stdout ); |
681 |
|
/** |
682 |
|
* we do not free the last tree node, it will be deleted by |
683 |
|
* hmlp::tree::Tree()::~Tree() |
684 |
|
*/ |
685 |
|
if ( mpitreelists.size() ) |
686 |
|
{ |
687 |
|
for ( size_t i = 0; i < mpitreelists.size() - 1; i ++ ) |
688 |
|
if ( mpitreelists[ i ] ) delete mpitreelists[ i ]; |
689 |
|
mpitreelists.clear(); |
690 |
|
} |
691 |
|
//printf( "end ~Tree() distributed\n" ); fflush( stdout ); |
692 |
|
}; |
693 |
|
|
694 |
|
|
695 |
|
/** |
696 |
|
* @brief free all tree nodes including local tree nodes, |
697 |
|
* distributed tree nodes and let nodes |
698 |
|
*/ |
699 |
|
void CleanUp() |
700 |
|
{ |
701 |
|
/** Free all local tree nodes */ |
702 |
|
if ( this->treelist.size() ) |
703 |
|
{ |
704 |
|
for ( size_t i = 0; i < this->treelist.size(); i ++ ) |
705 |
|
if ( this->treelist[ i ] ) delete this->treelist[ i ]; |
706 |
|
} |
707 |
|
this->treelist.clear(); |
708 |
|
|
709 |
|
/** Free all distributed tree nodes */ |
710 |
|
if ( mpitreelists.size() ) |
711 |
|
{ |
712 |
|
for ( size_t i = 0; i < mpitreelists.size() - 1; i ++ ) |
713 |
|
if ( mpitreelists[ i ] ) delete mpitreelists[ i ]; |
714 |
|
} |
715 |
|
mpitreelists.clear(); |
716 |
|
|
717 |
|
}; /** end CleanUp() */ |
718 |
|
|
719 |
|
|
720 |
|
/** @breif Allocate all distributed tree nodse. */ |
721 |
|
void AllocateNodes( vector<size_t> &gids ) |
722 |
|
{ |
723 |
|
/** Decide the depth of the distributed tree according to mpi size. */ |
724 |
|
//auto mycomm = comm; |
725 |
|
auto mycomm = this->GetComm(); |
726 |
|
//int mysize = size; |
727 |
|
int mysize = this->GetCommSize(); |
728 |
|
//int myrank = rank; |
729 |
|
int myrank = this->GetCommRank(); |
730 |
|
int mycolor = 0; |
731 |
|
size_t mylevel = 0; |
732 |
|
|
733 |
|
/** Allocate root( setup, n = 0, l = 0, parent = NULL ). */ |
734 |
|
auto *root = new MPINODE( &(this->setup), |
735 |
|
this->n, mylevel, gids, NULL, |
736 |
|
&(this->morton2node), &(this->lock), mycomm ); |
737 |
|
|
738 |
|
/** Push root to the mpi treelist. */ |
739 |
|
mpitreelists.push_back( root ); |
740 |
|
|
741 |
|
/** Recursively spliiting the communicator. */ |
742 |
|
while ( mysize > 1 ) |
743 |
|
{ |
744 |
|
mpi::Comm childcomm; |
745 |
|
|
746 |
|
/** Increase level. */ |
747 |
|
mylevel += 1; |
748 |
|
/** Left color = 0, right color = 1. */ |
749 |
|
mycolor = ( myrank < mysize / 2 ) ? 0 : 1; |
750 |
|
/** Split and assign the subcommunicators for children. */ |
751 |
|
ierr = mpi::Comm_split( mycomm, mycolor, myrank, &(childcomm) ); |
752 |
|
/** Update mycomm, mysize, and myrank to proceed to the next iteration. */ |
753 |
|
mycomm = childcomm; |
754 |
|
mpi::Comm_size( mycomm, &mysize ); |
755 |
|
mpi::Comm_rank( mycomm, &myrank ); |
756 |
|
|
757 |
|
/** Create the child node. */ |
758 |
|
auto *parent = mpitreelists.back(); |
759 |
|
auto *child = new MPINODE( &(this->setup), |
760 |
|
(size_t)0, mylevel, parent, |
761 |
|
&(this->morton2node), &(this->lock), mycomm ); |
762 |
|
|
763 |
|
/** Create the sibling in type NODE but not MPINODE. */ |
764 |
|
child->sibling = new NODE( (size_t)0 ); // Node morton is computed later. |
765 |
|
/** Setup parent's children */ |
766 |
|
//parent->SetupChild( child ); |
767 |
|
parent->kids[ 0 ] = child; |
768 |
|
parent->child = child; |
769 |
|
/** Push to the mpi treelist */ |
770 |
|
mpitreelists.push_back( child ); |
771 |
|
} |
772 |
|
/** Global synchronization. */ |
773 |
|
this->Barrier(); |
774 |
|
|
775 |
|
/** Allocate local tree nodes. */ |
776 |
|
auto *local_tree_root = mpitreelists.back(); |
777 |
|
tree::Tree<SETUP, NODEDATA>::AllocateNodes( local_tree_root ); |
778 |
|
|
779 |
|
}; /** end AllocateNodes() */ |
780 |
|
|
781 |
|
|
782 |
|
|
783 |
|
|
784 |
|
vector<size_t> GetPermutation() |
785 |
|
{ |
786 |
|
vector<size_t> perm_loc, perm_glb; |
787 |
|
perm_loc = tree::Tree<SETUP, NODEDATA>::GetPermutation(); |
788 |
|
mpi::GatherVector( perm_loc, perm_glb, 0, this->GetComm() ); |
789 |
|
|
790 |
|
//if ( rank == 0 ) |
791 |
|
//{ |
792 |
|
// /** Sanity check using an 0:N-1 table. */ |
793 |
|
// vector<bool> Table( this->n, false ); |
794 |
|
// for ( size_t i = 0; i < perm_glb.size(); i ++ ) |
795 |
|
// Table[ perm_glb[ i ] ] = true; |
796 |
|
// for ( size_t i = 0; i < Table.size(); i ++ ) assert( Table[ i ] ); |
797 |
|
//} |
798 |
|
|
799 |
|
return perm_glb; |
800 |
|
}; /** end GetTreePermutation() */ |
801 |
|
|
802 |
|
|
803 |
|
|
804 |
|
|
805 |
|
|
806 |
|
/** Perform approximate kappa neighbor search. */ |
807 |
|
template<typename KNNTASK> |
808 |
|
DistData<STAR, CBLK, pair<T, size_t>> |
809 |
|
AllNearestNeighbor( size_t n_tree, size_t n, size_t k, |
810 |
|
pair<T, size_t> initNN, KNNTASK &dummy ) |
811 |
|
{ |
812 |
|
mpi::PrintProgress( "[BEG] NeighborSearch ...", this->GetComm() ); |
813 |
|
|
814 |
|
/** Get the problem size from setup->K->row(). */ |
815 |
|
this->n = n; |
816 |
|
/** k-by-N, column major. */ |
817 |
|
DistData<STAR, CBLK, pair<T, size_t>> NN( k, n, initNN, this->GetComm() ); |
818 |
|
/** Use leaf size = 4 * k. */ |
819 |
|
this->setup.m = 4 * k; |
820 |
|
if ( this->setup.m < 512 ) this->setup.m = 512; |
821 |
|
this->m = this->setup.m; |
822 |
|
|
823 |
|
|
824 |
|
///** Local problem size (assuming Round-Robin) */ |
825 |
|
////num_points_owned = ( n - 1 ) / size + 1; |
826 |
|
//num_points_owned = ( n - 1 ) / this->GetCommSize() + 1; |
827 |
|
|
828 |
|
///** Edge case */ |
829 |
|
//if ( n % this->GetCommSize() ) |
830 |
|
//{ |
831 |
|
// //if ( rank >= ( n % size ) ) num_points_owned -= 1; |
832 |
|
// if ( this->GetCommRank() >= ( n % this->GetCommSize() ) ) |
833 |
|
// num_points_owned -= 1; |
834 |
|
//} |
835 |
|
|
836 |
|
/** Local problem size (assuming Round-Robin) */ |
837 |
|
num_points_owned = n / this->GetCommSize(); |
838 |
|
/** Edge case */ |
839 |
|
if ( this->GetCommRank() < ( n % this->GetCommSize() ) ) |
840 |
|
num_points_owned += 1; |
841 |
|
|
842 |
|
|
843 |
|
|
844 |
|
/** Initial gids distribution (asssuming Round-Robin) */ |
845 |
|
vector<size_t> gids( num_points_owned, 0 ); |
846 |
|
for ( size_t i = 0; i < num_points_owned; i ++ ) |
847 |
|
//gids[ i ] = i * size + rank; |
848 |
|
gids[ i ] = i * this->GetCommSize() + this->GetCommRank(); |
849 |
|
|
850 |
|
/** Allocate distributed tree nodes in advance. */ |
851 |
|
AllocateNodes( gids ); |
852 |
|
|
853 |
|
|
854 |
|
/** Metric tree partitioning. */ |
855 |
|
DistSplitTask<MPINODE> mpisplittask; |
856 |
|
tree::SplitTask<NODE> seqsplittask; |
857 |
|
for ( size_t t = 0; t < n_tree; t ++ ) |
858 |
|
{ |
859 |
|
DistTraverseDown( mpisplittask ); |
860 |
|
LocaTraverseDown( seqsplittask ); |
861 |
|
ExecuteAllTasks(); |
862 |
|
|
863 |
|
/** Query neighbors computed in CIDS distribution. */ |
864 |
|
DistData<STAR, CIDS, pair<T, size_t>> Q_cids( k, this->n, this->treelist[ 0 ]->gids, initNN, this->GetComm() ); |
865 |
|
/** Pass in neighbor pointer. */ |
866 |
|
this->setup.NN = &Q_cids; |
867 |
|
LocaTraverseLeafs( dummy ); |
868 |
|
ExecuteAllTasks(); |
869 |
|
|
870 |
|
/** Queries computed in CBLK distribution */ |
871 |
|
DistData<STAR, CBLK, pair<T, size_t>> Q_cblk( k, this->n, this->GetComm() ); |
872 |
|
/** Redistribute from CIDS to CBLK */ |
873 |
|
Q_cblk = Q_cids; |
874 |
|
/** Merge Q_cblk into NN (sort and remove duplication) */ |
875 |
|
assert( Q_cblk.col_owned() == NN.col_owned() ); |
876 |
|
MergeNeighbors( k, NN.col_owned(), NN, Q_cblk ); |
877 |
|
} |
878 |
|
|
879 |
|
|
880 |
|
|
881 |
|
|
882 |
|
|
883 |
|
|
884 |
|
|
885 |
|
// /** Metric tree partitioning. */ |
886 |
|
// DistSplitTask<MPINODE> mpisplittask; |
887 |
|
// tree::SplitTask<NODE> seqsplittask; |
888 |
|
// DependencyCleanUp(); |
889 |
|
// DistTraverseDown( mpisplittask ); |
890 |
|
// LocaTraverseDown( seqsplittask ); |
891 |
|
// ExecuteAllTasks(); |
892 |
|
// |
893 |
|
// |
894 |
|
// for ( size_t t = 0; t < n_tree; t ++ ) |
895 |
|
// { |
896 |
|
// this->Barrier(); |
897 |
|
// //if ( this->GetCommRank() == 0 ) printf( "Iteration #%lu\n", t ); |
898 |
|
// |
899 |
|
// /** Query neighbors computed in CIDS distribution. */ |
900 |
|
// DistData<STAR, CIDS, pair<T, size_t>> Q_cids( k, this->n, |
901 |
|
// this->treelist[ 0 ]->gids, initNN, this->GetComm() ); |
902 |
|
// /** Pass in neighbor pointer. */ |
903 |
|
// this->setup.NN = &Q_cids; |
904 |
|
// /** Overlap */ |
905 |
|
// if ( t != n_tree - 1 ) |
906 |
|
// { |
907 |
|
// //DependencyCleanUp(); |
908 |
|
// DistTraverseDown( mpisplittask ); |
909 |
|
// ExecuteAllTasks(); |
910 |
|
// } |
911 |
|
// mpi::PrintProgress( "[MID] Here ...", this->GetComm() ); |
912 |
|
// DependencyCleanUp(); |
913 |
|
// LocaTraverseLeafs( dummy ); |
914 |
|
// LocaTraverseDown( seqsplittask ); |
915 |
|
// ExecuteAllTasks(); |
916 |
|
// mpi::PrintProgress( "[MID] Here 22...", this->GetComm() ); |
917 |
|
// |
918 |
|
// if ( t == 0 ) |
919 |
|
// { |
920 |
|
// /** Redistribute from CIDS to CBLK */ |
921 |
|
// NN = Q_cids; |
922 |
|
// } |
923 |
|
// else |
924 |
|
// { |
925 |
|
// /** Queries computed in CBLK distribution */ |
926 |
|
// DistData<STAR, CBLK, pair<T, size_t>> Q_cblk( k, this->n, this->GetComm() ); |
927 |
|
// /** Redistribute from CIDS to CBLK */ |
928 |
|
// Q_cblk = Q_cids; |
929 |
|
// /** Merge Q_cblk into NN (sort and remove duplication) */ |
930 |
|
// assert( Q_cblk.col_owned() == NN.col_owned() ); |
931 |
|
// MergeNeighbors( k, NN.col_owned(), NN, Q_cblk ); |
932 |
|
// } |
933 |
|
// |
934 |
|
// //double mer_time = omp_get_wtime() - beg; |
935 |
|
// |
936 |
|
// //if ( rank == 0 ) |
937 |
|
// //printf( "%lfs %lfs %lfs\n", mpi_time, seq_time, mer_time ); fflush( stdout ); |
938 |
|
// } |
939 |
|
|
940 |
|
/** Check for illegle values. */ |
941 |
|
for ( auto &neig : NN ) |
942 |
|
{ |
943 |
|
if ( neig.second < 0 || neig.second >= NN.col() ) |
944 |
|
{ |
945 |
|
printf( "Illegle neighbor gid %lu\n", neig.second ); |
946 |
|
break; |
947 |
|
} |
948 |
|
} |
949 |
|
|
950 |
|
mpi::PrintProgress( "[END] NeighborSearch ...", this->GetComm() ); |
951 |
|
return NN; |
952 |
|
}; /** end AllNearestNeighbor() */ |
953 |
|
|
954 |
|
|
955 |
|
|
956 |
|
|
957 |
|
/** @brief partition n points using a distributed binary tree. */ |
958 |
|
void TreePartition() |
959 |
|
{ |
960 |
|
mpi::PrintProgress( "[BEG] TreePartitioning ...", this->GetComm() ); |
961 |
|
|
962 |
|
/** Set up total problem size n and leaf node size m. */ |
963 |
|
this->n = this->setup.ProblemSize(); |
964 |
|
this->m = this->setup.LeafNodeSize(); |
965 |
|
|
966 |
|
/** Initial gids distribution (asssuming Round-Robin). */ |
967 |
|
//for ( size_t i = rank; i < this->n; i += size ) |
968 |
|
for ( size_t i = this->GetCommRank(); i < this->n; i += this->GetCommSize() ) |
969 |
|
this->global_indices.push_back( i ); |
970 |
|
/** Local problem size (assuming Round-Robin). */ |
971 |
|
num_points_owned = this->global_indices.size(); |
972 |
|
/** Allocate distributed tree nodes in advance. */ |
973 |
|
AllocateNodes( this->global_indices ); |
974 |
|
|
975 |
|
|
976 |
|
|
977 |
|
DependencyCleanUp(); |
978 |
|
|
979 |
|
|
980 |
|
|
981 |
|
|
982 |
|
DistSplitTask<MPINODE> mpiSPLITtask; |
983 |
|
tree::SplitTask<NODE> seqSPLITtask; |
984 |
|
DistTraverseDown( mpiSPLITtask ); |
985 |
|
LocaTraverseDown( seqSPLITtask ); |
986 |
|
ExecuteAllTasks(); |
987 |
|
|
988 |
|
|
989 |
|
|
990 |
|
tree::IndexPermuteTask<NODE> seqINDXtask; |
991 |
|
LocaTraverseUp( seqINDXtask ); |
992 |
|
DistIndexPermuteTask<MPINODE> mpiINDXtask; |
993 |
|
DistTraverseUp( mpiINDXtask ); |
994 |
|
ExecuteAllTasks(); |
995 |
|
|
996 |
|
//printf( "rank %d finish split\n", rank ); fflush( stdout ); |
997 |
|
|
998 |
|
|
999 |
|
/** Allocate space for point MortonID. */ |
1000 |
|
(this->setup).morton.resize( this->n ); |
1001 |
|
|
1002 |
|
/** Compute Morton ID for both distributed and local trees. */ |
1003 |
|
RecursiveMorton( mpitreelists[ 0 ], MortonHelper::Root() ); |
1004 |
|
|
1005 |
|
/** Clean up the map. */ |
1006 |
|
this->morton2node.clear(); |
1007 |
|
|
1008 |
|
/** Construct morton2node map for the local tree. */ |
1009 |
|
for ( auto node : this->treelist ) this->morton2node[ node->morton ] = node; |
1010 |
|
|
1011 |
|
/**Construc morton2node map for the distributed tree. */ |
1012 |
|
for ( auto node : this->mpitreelists ) |
1013 |
|
{ |
1014 |
|
this->morton2node[ node->morton ] = node; |
1015 |
|
auto *sibling = node->sibling; |
1016 |
|
if ( node->l ) this->morton2node[ sibling->morton ] = sibling; |
1017 |
|
} |
1018 |
|
|
1019 |
|
this->Barrier(); |
1020 |
|
mpi::PrintProgress( "[END] TreePartitioning ...", this->GetComm() ); |
1021 |
|
}; /** end TreePartition() */ |
1022 |
|
|
1023 |
|
|
1024 |
|
/** Assign MortonID to each node recursively. */ |
1025 |
|
void RecursiveMorton( MPINODE *node, MortonHelper::Recursor r ) |
1026 |
|
{ |
1027 |
|
/** MPI Support. */ |
1028 |
|
int comm_size = this->GetCommSize(); |
1029 |
|
int comm_rank = this->GetCommRank(); |
1030 |
|
int node_size = node->GetCommSize(); |
1031 |
|
int node_rank = node->GetCommRank(); |
1032 |
|
|
1033 |
|
/** Set the node MortonID. */ |
1034 |
|
node->morton = MortonHelper::MortonID( r ); |
1035 |
|
/** Set my sibling's MortonID. */ |
1036 |
|
if ( node->sibling ) |
1037 |
|
node->sibling->morton = MortonHelper::SiblingMortonID( r ); |
1038 |
|
|
1039 |
|
if ( node_size < 2 ) |
1040 |
|
{ |
1041 |
|
/** Compute MortonID recursively for the local tree. */ |
1042 |
|
tree::Tree<SETUP, NODEDATA>::RecursiveMorton( node, r ); |
1043 |
|
/** Prepare to exchange all <gid,MortonID> pairs. */ |
1044 |
|
auto &gids = this->treelist[ 0 ]->gids; |
1045 |
|
vector<int> recv_size( comm_size, 0 ); |
1046 |
|
vector<int> recv_disp( comm_size, 0 ); |
1047 |
|
vector<pair<size_t, size_t>> send_pairs; |
1048 |
|
vector<pair<size_t, size_t>> recv_pairs( this->n ); |
1049 |
|
|
1050 |
|
/** Gather pairs I own. */ |
1051 |
|
for ( auto it : gids ) |
1052 |
|
{ |
1053 |
|
send_pairs.push_back( |
1054 |
|
pair<size_t, size_t>( it, this->setup.morton[ it ]) ); |
1055 |
|
} |
1056 |
|
|
1057 |
|
/** Exchange send_pairs.size(). */ |
1058 |
|
int send_size = send_pairs.size(); |
1059 |
|
mpi::Allgather( &send_size, 1, recv_size.data(), 1, this->GetComm() ); |
1060 |
|
/** Compute displacement for Allgatherv. */ |
1061 |
|
for ( size_t p = 1; p < comm_size; p ++ ) |
1062 |
|
{ |
1063 |
|
recv_disp[ p ] = recv_disp[ p - 1 ] + recv_size[ p - 1 ]; |
1064 |
|
} |
1065 |
|
/** Sanity check for the total size. */ |
1066 |
|
size_t total_gids = 0; |
1067 |
|
for ( size_t p = 0; p < comm_size; p ++ ) |
1068 |
|
{ |
1069 |
|
total_gids += recv_size[ p ]; |
1070 |
|
} |
1071 |
|
assert( total_gids == this->n ); |
1072 |
|
/** Exchange all pairs. */ |
1073 |
|
mpi::Allgatherv( send_pairs.data(), send_size, |
1074 |
|
recv_pairs.data(), recv_size.data(), recv_disp.data(), this->GetComm() ); |
1075 |
|
/** Fill in all MortonIDs. */ |
1076 |
|
for ( auto it : recv_pairs ) this->setup.morton[ it.first ] = it.second; |
1077 |
|
} |
1078 |
|
else |
1079 |
|
{ |
1080 |
|
if ( node_rank < node_size / 2 ) |
1081 |
|
{ |
1082 |
|
RecursiveMorton( node->child, MortonHelper::RecurLeft( r ) ); |
1083 |
|
} |
1084 |
|
else |
1085 |
|
{ |
1086 |
|
RecursiveMorton( node->child, MortonHelper::RecurRight( r ) ); |
1087 |
|
} |
1088 |
|
} |
1089 |
|
}; /** end RecursiveMorton() */ |
1090 |
|
|
1091 |
|
|
1092 |
|
|
1093 |
|
|
1094 |
|
Data<int> CheckAllInteractions() |
1095 |
|
{ |
1096 |
|
/** Get the total depth of the tree. */ |
1097 |
|
int total_depth = this->treelist.back()->l; |
1098 |
|
/** Number of total leaf nodes. */ |
1099 |
|
int num_leafs = 1 << total_depth; |
1100 |
|
/** Create a 2^l-by-2^l table to check all interactions. */ |
1101 |
|
Data<int> A( num_leafs, num_leafs, 0 ); |
1102 |
|
Data<int> B( num_leafs, num_leafs, 0 ); |
1103 |
|
/** Now traverse all tree nodes (excluding the root). */ |
1104 |
|
for ( int t = 1; t < this->treelist.size(); t ++ ) |
1105 |
|
{ |
1106 |
|
auto *node = this->treelist[ t ]; |
1107 |
|
///** Loop over all near interactions. */ |
1108 |
|
//for ( auto it : node->NNNearNodeMortonIDs ) |
1109 |
|
//{ |
1110 |
|
// auto I = MortonHelper::Morton2Offsets( node->morton, total_depth ); |
1111 |
|
// auto J = MortonHelper::Morton2Offsets( it, total_depth ); |
1112 |
|
// for ( auto i : I ) for ( auto j : J ) A( i, j ) += 1; |
1113 |
|
//} |
1114 |
|
///** Loop over all far interactions. */ |
1115 |
|
//for ( auto it : node->NNFarNodeMortonIDs ) |
1116 |
|
//{ |
1117 |
|
// auto I = MortonHelper::Morton2Offsets( node->morton, total_depth ); |
1118 |
|
// auto J = MortonHelper::Morton2Offsets( it, total_depth ); |
1119 |
|
// for ( auto i : I ) for ( auto j : J ) A( i, j ) += 1; |
1120 |
|
//} |
1121 |
|
|
1122 |
|
for ( int p = 0; p < this->GetCommSize(); p ++ ) |
1123 |
|
{ |
1124 |
|
if ( node->isleaf ) |
1125 |
|
{ |
1126 |
|
for ( auto & it : node->DistNear[ p ] ) |
1127 |
|
{ |
1128 |
|
auto I = MortonHelper::Morton2Offsets( node->morton, total_depth ); |
1129 |
|
auto J = MortonHelper::Morton2Offsets( it.first, total_depth ); |
1130 |
|
for ( auto i : I ) for ( auto j : J ) |
1131 |
|
{ |
1132 |
|
assert( i < num_leafs && j < num_leafs ); |
1133 |
|
A( i, j ) += 1; |
1134 |
|
} |
1135 |
|
} |
1136 |
|
} |
1137 |
|
for ( auto & it : node->DistFar[ p ] ) |
1138 |
|
{ |
1139 |
|
auto I = MortonHelper::Morton2Offsets( node->morton, total_depth ); |
1140 |
|
auto J = MortonHelper::Morton2Offsets( it.first, total_depth ); |
1141 |
|
for ( auto i : I ) for ( auto j : J ) |
1142 |
|
{ |
1143 |
|
assert( i < num_leafs && j < num_leafs ); |
1144 |
|
A( i, j ) += 1; |
1145 |
|
} |
1146 |
|
} |
1147 |
|
} |
1148 |
|
} |
1149 |
|
|
1150 |
|
for ( auto *node : mpitreelists ) |
1151 |
|
{ |
1152 |
|
///** Loop over all near interactions. */ |
1153 |
|
//for ( auto it : node->NNNearNodeMortonIDs ) |
1154 |
|
//{ |
1155 |
|
// auto I = MortonHelper::Morton2Offsets( node->morton, total_depth ); |
1156 |
|
// auto J = MortonHelper::Morton2Offsets( it, total_depth ); |
1157 |
|
// for ( auto i : I ) for ( auto j : J ) A( i, j ) += 1; |
1158 |
|
//} |
1159 |
|
///** Loop over all far interactions. */ |
1160 |
|
//for ( auto it : node->NNFarNodeMortonIDs ) |
1161 |
|
//{ |
1162 |
|
// auto I = MortonHelper::Morton2Offsets( node->morton, total_depth ); |
1163 |
|
// auto J = MortonHelper::Morton2Offsets( it, total_depth ); |
1164 |
|
// for ( auto i : I ) for ( auto j : J ) A( i, j ) += 1; |
1165 |
|
//} |
1166 |
|
for ( int p = 0; p < this->GetCommSize(); p ++ ) |
1167 |
|
{ |
1168 |
|
if ( node->isleaf ) |
1169 |
|
{ |
1170 |
|
for ( auto & it : node->DistNear[ p ] ) |
1171 |
|
{ |
1172 |
|
auto I = MortonHelper::Morton2Offsets( node->morton, total_depth ); |
1173 |
|
auto J = MortonHelper::Morton2Offsets( it.first, total_depth ); |
1174 |
|
for ( auto i : I ) for ( auto j : J ) |
1175 |
|
{ |
1176 |
|
assert( i < num_leafs && j < num_leafs ); |
1177 |
|
A( i, j ) += 1; |
1178 |
|
} |
1179 |
|
} |
1180 |
|
} |
1181 |
|
for ( auto & it : node->DistFar[ p ] ) |
1182 |
|
{ |
1183 |
|
auto I = MortonHelper::Morton2Offsets( node->morton, total_depth ); |
1184 |
|
auto J = MortonHelper::Morton2Offsets( it.first, total_depth ); |
1185 |
|
for ( auto i : I ) for ( auto j : J ) |
1186 |
|
{ |
1187 |
|
assert( i < num_leafs && j < num_leafs ); |
1188 |
|
A( i, j ) += 1; |
1189 |
|
} |
1190 |
|
} |
1191 |
|
} |
1192 |
|
} |
1193 |
|
|
1194 |
|
/** Reduce */ |
1195 |
|
mpi::Reduce( A.data(), B.data(), A.size(), MPI_SUM, 0, this->GetComm() ); |
1196 |
|
|
1197 |
|
if ( this->GetCommRank() == 0 ) |
1198 |
|
{ |
1199 |
|
for ( size_t i = 0; i < num_leafs; i ++ ) |
1200 |
|
{ |
1201 |
|
for ( size_t j = 0; j < num_leafs; j ++ ) printf( "%d", B( i, j ) ); |
1202 |
|
printf( "\n" ); |
1203 |
|
} |
1204 |
|
} |
1205 |
|
|
1206 |
|
return B; |
1207 |
|
}; /** end CheckAllInteractions() */ |
1208 |
|
|
1209 |
|
|
1210 |
|
|
1211 |
|
|
1212 |
|
|
1213 |
|
|
1214 |
|
|
1215 |
|
|
1216 |
|
|
1217 |
|
|
1218 |
|
|
1219 |
|
|
1220 |
|
|
1221 |
|
/** */ |
1222 |
|
int Morton2Rank( size_t it ) |
1223 |
|
{ |
1224 |
|
return MortonHelper::Morton2Rank( it, this->GetCommSize() ); |
1225 |
|
}; /** end Morton2Rank() */ |
1226 |
|
|
1227 |
|
int Index2Rank( size_t gid ) |
1228 |
|
{ |
1229 |
|
return Morton2Rank( this->setup.morton[ gid ] ); |
1230 |
|
}; /** end Morton2Rank() */ |
1231 |
|
|
1232 |
|
|
1233 |
|
|
1234 |
|
|
1235 |
|
|
1236 |
|
template<typename TASK, typename... Args> |
1237 |
|
void LocaTraverseUp( TASK &dummy, Args&... args ) |
1238 |
|
{ |
1239 |
|
/** contain at lesat one tree node */ |
1240 |
|
assert( this->treelist.size() ); |
1241 |
|
|
1242 |
|
/** |
1243 |
|
* traverse the local tree without the root |
1244 |
|
* |
1245 |
|
* IMPORTANT: local root alias of the distributed leaf node |
1246 |
|
* IMPORTANT: here l must be int, size_t will wrap over |
1247 |
|
* |
1248 |
|
*/ |
1249 |
|
|
1250 |
|
//printf( "depth %lu\n", this->depth ); fflush( stdout ); |
1251 |
|
|
1252 |
|
for ( int l = this->depth; l >= 1; l -- ) |
1253 |
|
{ |
1254 |
|
size_t n_nodes = 1 << l; |
1255 |
|
auto level_beg = this->treelist.begin() + n_nodes - 1; |
1256 |
|
|
1257 |
|
/** loop over each node at level-l */ |
1258 |
|
for ( size_t node_ind = 0; node_ind < n_nodes; node_ind ++ ) |
1259 |
|
{ |
1260 |
|
auto *node = *(level_beg + node_ind); |
1261 |
|
RecuTaskSubmit( node, dummy, args... ); |
1262 |
|
} |
1263 |
|
} |
1264 |
|
}; /** end LocaTraverseUp() */ |
1265 |
|
|
1266 |
|
|
1267 |
|
template<typename TASK, typename... Args> |
1268 |
|
void DistTraverseUp( TASK &dummy, Args&... args ) |
1269 |
|
{ |
1270 |
|
MPINODE *node = mpitreelists.back(); |
1271 |
|
while ( node ) |
1272 |
|
{ |
1273 |
|
if ( this->DoOutOfOrder() ) RecuTaskSubmit( node, dummy, args... ); |
1274 |
|
else RecuTaskExecute( node, dummy, args... ); |
1275 |
|
/** move to its parent */ |
1276 |
|
node = (MPINODE*)node->parent; |
1277 |
|
} |
1278 |
|
}; /** end DistTraverseUp() */ |
1279 |
|
|
1280 |
|
|
1281 |
|
template<typename TASK, typename... Args> |
1282 |
|
void LocaTraverseDown( TASK &dummy, Args&... args ) |
1283 |
|
{ |
1284 |
|
/** contain at lesat one tree node */ |
1285 |
|
assert( this->treelist.size() ); |
1286 |
|
|
1287 |
|
/** |
1288 |
|
* traverse the local tree without the root |
1289 |
|
* |
1290 |
|
* IMPORTANT: local root alias of the distributed leaf node |
1291 |
|
* IMPORTANT: here l must be int, size_t will wrap over |
1292 |
|
* |
1293 |
|
*/ |
1294 |
|
for ( int l = 1; l <= this->depth; l ++ ) |
1295 |
|
{ |
1296 |
|
size_t n_nodes = 1 << l; |
1297 |
|
auto level_beg = this->treelist.begin() + n_nodes - 1; |
1298 |
|
|
1299 |
|
for ( size_t node_ind = 0; node_ind < n_nodes; node_ind ++ ) |
1300 |
|
{ |
1301 |
|
auto *node = *(level_beg + node_ind); |
1302 |
|
RecuTaskSubmit( node, dummy, args... ); |
1303 |
|
} |
1304 |
|
} |
1305 |
|
}; /** end LocaTraverseDown() */ |
1306 |
|
|
1307 |
|
|
1308 |
|
template<typename TASK, typename... Args> |
1309 |
|
void DistTraverseDown( TASK &dummy, Args&... args ) |
1310 |
|
{ |
1311 |
|
auto *node = mpitreelists.front(); |
1312 |
|
while ( node ) |
1313 |
|
{ |
1314 |
|
//printf( "now at level %lu\n", node->l ); fflush( stdout ); |
1315 |
|
if ( this->DoOutOfOrder() ) RecuTaskSubmit( node, dummy, args... ); |
1316 |
|
else RecuTaskExecute( node, dummy, args... ); |
1317 |
|
//printf( "RecuTaskSubmit at level %lu\n", node->l ); fflush( stdout ); |
1318 |
|
|
1319 |
|
/** |
1320 |
|
* move to its child |
1321 |
|
* IMPORTANT: here we need to cast the pointer back to mpitree::Node* |
1322 |
|
*/ |
1323 |
|
node = node->child; |
1324 |
|
} |
1325 |
|
}; /** end DistTraverseDown() */ |
1326 |
|
|
1327 |
|
|
1328 |
|
template<typename TASK, typename... Args> |
1329 |
|
void LocaTraverseLeafs( TASK &dummy, Args&... args ) |
1330 |
|
{ |
1331 |
|
/** contain at lesat one tree node */ |
1332 |
|
assert( this->treelist.size() ); |
1333 |
|
|
1334 |
|
int n_nodes = 1 << this->depth; |
1335 |
|
auto level_beg = this->treelist.begin() + n_nodes - 1; |
1336 |
|
|
1337 |
|
for ( int node_ind = 0; node_ind < n_nodes; node_ind ++ ) |
1338 |
|
{ |
1339 |
|
auto *node = *(level_beg + node_ind); |
1340 |
|
RecuTaskSubmit( node, dummy, args... ); |
1341 |
|
} |
1342 |
|
}; /** end LocaTraverseLeaf() */ |
1343 |
|
|
1344 |
|
|
1345 |
|
/** |
1346 |
|
* @brief For unordered traversal, we just call local |
1347 |
|
* downward traversal. |
1348 |
|
*/ |
1349 |
|
template<typename TASK, typename... Args> |
1350 |
|
void LocaTraverseUnOrdered( TASK &dummy, Args&... args ) |
1351 |
|
{ |
1352 |
|
LocaTraverseDown( dummy, args... ); |
1353 |
|
}; /** end LocaTraverseUnOrdered() */ |
1354 |
|
|
1355 |
|
|
1356 |
|
/** |
1357 |
|
* @brief For unordered traversal, we just call distributed |
1358 |
|
* downward traversal. |
1359 |
|
*/ |
1360 |
|
template<typename TASK, typename... Args> |
1361 |
|
void DistTraverseUnOrdered( TASK &dummy, Args&... args ) |
1362 |
|
{ |
1363 |
|
DistTraverseDown( dummy, args... ); |
1364 |
|
}; /** end DistTraverseUnOrdered() */ |
1365 |
|
|
1366 |
|
|
1367 |
|
|
1368 |
|
|
1369 |
|
|
1370 |
|
void DependencyCleanUp() |
1371 |
|
{ |
1372 |
|
for ( auto node : mpitreelists ) node->DependencyCleanUp(); |
1373 |
|
//for ( size_t i = 0; i < mpitreelists.size(); i ++ ) |
1374 |
|
//{ |
1375 |
|
// mpitreelists[ i ]->DependencyCleanUp(); |
1376 |
|
//} |
1377 |
|
|
1378 |
|
tree::Tree<SETUP, NODEDATA>::DependencyCleanUp(); |
1379 |
|
|
1380 |
|
|
1381 |
|
|
1382 |
|
|
1383 |
|
|
1384 |
|
|
1385 |
|
for ( auto p : NearRecvFrom ) p.DependencyCleanUp(); |
1386 |
|
for ( auto p : FarRecvFrom ) p.DependencyCleanUp(); |
1387 |
|
|
1388 |
|
/** TODO also clean up the LET node */ |
1389 |
|
|
1390 |
|
}; /** end DependencyCleanUp() */ |
1391 |
|
|
1392 |
|
|
1393 |
|
/** @brief */ |
1394 |
|
void ExecuteAllTasks() |
1395 |
|
{ |
1396 |
|
hmlp_run(); |
1397 |
|
this->Barrier(); |
1398 |
|
DependencyCleanUp(); |
1399 |
|
}; /** end ExecuteAllTasks() */ |
1400 |
|
|
1401 |
|
/** @brief */ |
1402 |
|
void DependOnNearInteractions( int p, Task *task ) |
1403 |
|
{ |
1404 |
|
/** Describe the dependencies of rank p. */ |
1405 |
|
for ( auto it : NearSentToRank[ p ] ) |
1406 |
|
{ |
1407 |
|
auto *node = this->morton2node[ it ]; |
1408 |
|
node->DependencyAnalysis( R, task ); |
1409 |
|
} |
1410 |
|
/** Try to enqueue if there is no dependency. */ |
1411 |
|
task->TryEnqueue(); |
1412 |
|
}; /** end DependOnNearInteractions() */ |
1413 |
|
|
1414 |
|
/** @brief */ |
1415 |
|
void DependOnFarInteractions( int p, Task *task ) |
1416 |
|
{ |
1417 |
|
/** Describe the dependencies of rank p. */ |
1418 |
|
for ( auto it : FarSentToRank[ p ] ) |
1419 |
|
{ |
1420 |
|
auto *node = this->morton2node[ it ]; |
1421 |
|
node->DependencyAnalysis( R, task ); |
1422 |
|
} |
1423 |
|
/** Try to enqueue if there is no dependency. */ |
1424 |
|
task->TryEnqueue(); |
1425 |
|
}; /** end DependOnFarInteractions() */ |
1426 |
|
|
1427 |
|
|
1428 |
|
|
1429 |
|
/** |
1430 |
|
* Interaction lists per rank |
1431 |
|
* |
1432 |
|
* NearSentToRank[ p ] contains all near node MortonIDs sent to rank p. |
1433 |
|
* NearRecvFromRank[ p ] contains all near node MortonIDs recv from rank p. |
1434 |
|
* NearRecvFromRank[ p ][ morton ] = offset in the received vector. |
1435 |
|
*/ |
1436 |
|
vector<vector<size_t>> NearSentToRank; |
1437 |
|
vector<map<size_t, int>> NearRecvFromRank; |
1438 |
|
vector<vector<size_t>> FarSentToRank; |
1439 |
|
vector<map<size_t, int>> FarRecvFromRank; |
1440 |
|
|
1441 |
|
vector<ReadWrite> NearRecvFrom; |
1442 |
|
vector<ReadWrite> FarRecvFrom; |
1443 |
|
|
1444 |
|
private: |
1445 |
|
|
1446 |
|
/** global communicator error message. */ |
1447 |
|
int ierr = 0; |
1448 |
|
/** n = sum( num_points_owned ) from all MPI processes. */ |
1449 |
|
size_t num_points_owned = 0; |
1450 |
|
|
1451 |
|
}; /** end class Tree */ |
1452 |
|
|
1453 |
|
|
1454 |
|
}; /** end namespace mpitree */ |
1455 |
|
}; /** end namespace hmlp */ |
1456 |
|
|
1457 |
|
#endif /** define MPITREE_HPP */ |