HMLP: High-performance Machine Learning Primitives
|
Public Member Functions | |
Regression (size_t d, size_t n, Data< T > *X, Data< T > *Y) | |
Data< T > | Ridge (kernel_s< T > &kernel, size_t niter) |
: Support SVD More... | |
Data< T > | Lasso (kernel_s< T > &kernel, size_t niter) |
Data< T > | SoftMax (kernel_s< T > &kernel, size_t nclass, size_t niter) |
Data< T > | Solve (kernel_s< T > &kernel, size_t niter) |
gradient descent More... | |
|
inline |
end Ridge()
|
inline |
: Support SVD
Linear ridge regression
XXt + lambda * I
XY
W = ( XXt + lambda * I )^{-1} * XY
|
inline |
|
inline |
gradient descent
w += (-1.0 / n) * K(Kw + b - Y + lambda * w) b += (-1.0 / n) * (Kw + b - Y)
create a kernel matrix
create a simple GOFMM compression
( K + lambda ) * W - Y + B
Kw + B - Y
update B = (-alpha / n) * ( Kw + B - Y)
update W -= 1.0 * K ( ( K + lambda ) * W - Y )
Z = Kw + B
Z = Kw + B