HMLP: High-performance Machine Learning Primitives
Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 12345]
 Caux_s< TA, TB, TC, TV >
 Cpvfmm::BasisInterface< ValueType, Derived >
 Cpvfmm::BasisInterface< ValueType, ChebBasis< ValueType > >
 Chmlp::Cache
 Chmlp::Cache1D< NSET, NWAY, T >Cache1D<NSET, NWAY, T> creates a layer of cache with NSET that directly maps a 1D array. The direct map is [ id % NSET ]. Each set has NWAY that are fully associated
 Chmlp::Cache2D< NSET, NWAY, T >
 Chmlp::Cache2D< 128, 16384, T >
 Chmlp::CacheLine
 Chmlp::gofmm::centersplit< SPDMATRIX, N_SPLIT, T >This the main splitter used to build the Spd-Askit tree. First compute the approximate center using subsamples. Then find the two most far away points to do the projection
 Chmlp::Cluster< T, Allocator >
 Chmlp::tci::Comm
 Chmlp::gofmm::CommandLineHelperThis is a helper class that parses the arguments from command lines
 Chmlp::gofmm::Configuration< T >Configuration contains all user-defined parameters
 Chmlp::tci::Context
 Cconv_relu_pool2x2_asm_d6x8
 Cconv_relu_pool2x2_asm_d8x4
 Cconv_relu_pool2x2_int_d8x4
 Cconv_relu_pool2x2_ref_d8x4
 Chmlp::DeviceThis class describes devices or accelerators that require a master thread to control. A device can accept tasks from multiple workers. All received tasks are expected to be executed independently in a time-sharing fashion. Whether these tasks are executed in parallel, sequential or with some built-in context switching scheme does not matter
 Chmlp::DeviceMemory< T >
 Cdowncast< TC, TV >
 Chmlp::EventWrapper for omp or pthread mutex
 Chmlp::gofmm::Factor< T >
 Cgaussian_int_d24x8
 Cgkmm_mrxnr< MR, NR, OPKERNEL, OP1, OP2, TA, TB, TC, TV >This kernel takes opkernel, op1 and op2 to implement an MR-by-NR GKMM operation
 Cgkrm_mrxnr< MR, NR, OPKERNEL, OP1, OP2, OPREDUCE, TA, TB, TC, TV >
 Cgnbx_mrxnr< MR, NR, OPKERNEL, OP1, OP2, TA, TB, TC, TPACKC, TV >
 Cgsks_gaussian_int_d12x16
 Cgsks_gaussian_int_d6x32
 Cgsks_gaussian_int_d8x4
 Cgsks_gaussian_int_d8x6
 Cgsks_gaussian_int_s12x32
 Cgsks_gaussian_int_s16x6
 Cgsks_gaussian_int_s8x8
 Cgsks_polynomial_int_d8x6
 Cgsks_polynomial_int_s16x6
 Chmlp::gsks_ref_mrxnr< MR, NR, T >
 Cidentity< T >
 Chmlp::kernel_s< T, TP >
 Chmlp::kernel_s< T, T >
 Cpvfmm::KernelFnWrapper
 Cpvfmm::KernelFunction< ValueType, DIM >
 Cpvfmm::KernelFunction< Real, DIM >
 Cpvfmm::KernelFunction< T, DIM >
 Cpvfmm::KernelMatrix< Real >
 Cpvfmm::KernelMatrix< T >
 Cknn_int_d6x32
 Cknn_int_d8x4
 Cknn_int_s12x32
 Cpvfmm::Laplace3D< ValueType >
 Chmlp::LayerBase< T >
 Chmlp::LockWrapper for omp or pthread mutex
 Chmlp::MatrifyableObject< NB, T, TPACK >
 Cpvfmm::Matrix< ValueType >
 Chmlp::MatrixReadWriteThis class creates 2D grids for 2D matrix partition
 Cpvfmm::MemoryManager::MemHeadHeader data for each memory block
 Cpvfmm::MemoryManagerMemoryManager class declaration
 Chmlp::MortonHelper
 CMPI_Status
 Chmlp::mpi::MPIObject
 Chmlp::mpi::NumberIntPair< T >
 Chmlp::pack_pbxib< NB, T, TPACK >
 Cpvfmm::Permutation< ValueType >
 Chmlp::gofmm::randomsplit< SPDMATRIX, N_SPLIT, T >This the splitter used in the randomized tree
 Chmlp::Range
 Chmlp::range
 Crank_k_asm_d4x4
 Crank_k_asm_d6x8
 Crank_k_asm_d8x4
 Crank_k_asm_d8x6
 Crank_k_asm_s16x6
 Crank_k_asm_s4x4
 Crank_k_asm_s6x16
 Crank_k_asm_s8x12
 Crank_k_asm_s8x8
 Crank_k_int_d24x8
 Crank_k_opt_d12x16
 Crank_k_opt_d6x32
 Crank_k_opt_s12x32
 Crank_k_ref_d8x4
 Chmlp::ReadWriteThis class provides the ability to perform dependency analysis
 Chmlp::Regression< T >
 Chmlp::root::RootFinderBase< T >
 Chmlp::RunTimeRunTime is statically created in hmlp_runtime.cpp
 Csemiring_mrxnr< MR, NR, OP1, OP2, TA, TB, TC, TV >
 Chmlp::mpitree::Setup< SPLITTER, DATATYPE >Data and setup that are shared with all nodes
 Chmlp::tree::Setup< SPLITTER, DATATYPE >Data and setup that are shared with all nodes
 Chmlp::mpitree::Setup< SPLITTER, T >
 Chmlp::tree::Setup< SPLITTER, T >
 Chmlp::gofmm::SimpleGOFMM< T, SPDMATRIX >
 Cpvfmm::Smoother< ValueType >
 Chmlp::SPDMatrixMPISupport< T >
 Chmlp::SPDMatrixMPISupport< DATATYPE >
 Chmlp::Statistic
 Cpvfmm::Stokes3D< ValueType >
 Chmlp::gofmm::Summary< NODE >Provide statistics summary for the execution section
 Chmlp::Task
 Chmlp::thread_communicator
 Chmlp::tree::Tree< SETUP, NODEDATA >
 Chmlp::tree::Tree< gofmm::hmlp::gofmm::Setup< SPDMATRIX, hmlp::gofmm::centersplit< SPDMATRIX, 2, T >, T >, gofmm::hmlp::gofmm::NodeData< T > >
 Cpvfmm::TypeTraits< T >Identify each type uniquely
 Chmlp::unpack_ibxjb< NB, T, TPACK >
 Cv4df_t
 Cv4li_t
 Cv8df_t
 Cvariable_bandwidth_gaussian_int_d8x4
 Cvariable_bandwidth_gaussian_ref_d8x4
 Cvector
 Cpvfmm::Vector< ValueType >
 Cpvfmm::Vector< Long >
 Chmlp::VirtualFunction< T >
 Chmlp::model::VirtualModel< T >
 Chmlp::VirtualNormalizedGraph< PARAM, T >
 Chmlp::Worker