HMLP: High-performance Machine Learning Primitives
|
#include <Data.hpp>
Public Member Functions | |
SparseData (size_t m=0, size_t n=0, size_t nnz=0, bool issymmetric=true) | |
void | Resize (size_t m, size_t n, size_t nnz, bool issymmetric) |
void | fromCSC (size_t m, size_t n, size_t nnz, bool issymmetric, const T *val, const size_t *row_ind, const size_t *col_ptr) |
T | operator() (size_t i, size_t j) const |
Data< T > | operator() (const vector< size_t > &I, const vector< size_t > &J) const |
size_t | ColPtr (size_t j) |
size_t | RowInd (size_t offset) |
T | Value (size_t offset) |
pair< T, size_t > | ImportantSample (size_t j) |
void | Print () |
template<bool LOWERTRIANGULAR, bool ISZEROBASE, bool IJONLY = false> | |
void | readmtx (string &filename) |
Read matrix market format (ijv) format. Only lower triangular part is stored. | |
size_t | row () |
size_t | col () |
template<typename TINDEX > | |
double | flops (TINDEX na, TINDEX nb) |
![]() | |
ReadWrite () | |
void | DependencyAnalysis (ReadWriteType type, Task *task) |
This is the key function that encode the dependency. More... | |
void | DependencyCleanUp () |
Additional Inherited Members | |
![]() | |
deque< Task * > | read |
deque< Task * > | write |
end class Data
|
inline |
(Default) constructor.
|
inline |
end operator ()
|
inline |
end Resize() Construct from three arrays: val[ nnz ],row_ind[ nnz ], and col_ptr[ n + 1 ].
|
inline |
end fromCSC() Retrive an element K( i, j ).
Early return if there is no nonzero entry in this column.
Search (BST) for row indices.
If the lower bound matches, then return the value.
Otherwise, return 0.
|
inline |
end operator () Retrive a subblock K( I, J ).
Evaluate Kij element by element.
Return submatrix KIJ.
|
inline |
Adjust the storage size.