HMLP: High-performance Machine Learning Primitives
|
These are data that shared by the whole local tree. More...
#include <gofmm.hpp>
Public Member Functions | |
void | FromConfiguration (Configuration< T > &config, SPDMATRIX &K, SPLITTER &splitter, Data< pair< T, size_t >> *NN) |
![]() | |
vector< size_t > | ContainAny (vector< size_t > &queries, size_t target) |
Check if this node contain any query using morton. Notice that queries[] contains gids; thus, morton[] needs to be accessed using gids. More... | |
![]() | |
Configuration (DistanceMetric metric_type, size_t problem_size, size_t leaf_node_size, size_t neighbor_size, size_t maximum_rank, T tolerance, T budget) | |
void | Set (DistanceMetric metric_type, size_t problem_size, size_t leaf_node_size, size_t neighbor_size, size_t maximum_rank, T tolerance, T budget) |
void | CopyFrom (Configuration< T > &config) |
DistanceMetric | MetricType () |
size_t | ProblemSize () |
size_t | LeafNodeSize () |
size_t | NeighborSize () |
size_t | MaximumRank () |
T | Tolerance () |
T | Budget () |
bool | IsSymmetric () |
bool | UseAdaptiveRanks () |
bool | SecureAccuracy () |
Public Attributes | |
SPDMATRIX * | K = NULL |
Data< T > * | w = NULL |
Data< T > * | u = NULL |
Data< T > * | input = NULL |
Data< T > * | output = NULL |
T | lambda = 0.0 |
bool | do_ulv_factorization = true |
![]() | |
size_t | m |
size_t | max_depth |
Data< pair< T, size_t > > * | NN |
vector< size_t > | morton |
SPLITTER | splitter |
Additional Inherited Members | |
![]() | |
typedef T | T |
These are data that shared by the whole local tree.
end class Configuration
|
inline |
Shallow copy from the config.
bool hmlp::gofmm::Setup< SPDMATRIX, SPLITTER, T >::do_ulv_factorization = true |
Use ULV or Sherman-Morrison-Woodbury
Data<T>* hmlp::gofmm::Setup< SPDMATRIX, SPLITTER, T >::input = NULL |
Buffer space, either dimension needs to be n.
SPDMATRIX* hmlp::gofmm::Setup< SPDMATRIX, SPLITTER, T >::K = NULL |
The SPDMATRIX (accessed with gids: dense, CSC or OOC).
T hmlp::gofmm::Setup< SPDMATRIX, SPLITTER, T >::lambda = 0.0 |
Regularization for factorization.
Data<T>* hmlp::gofmm::Setup< SPDMATRIX, SPLITTER, T >::w = NULL |
rhs-by-n, weights and potentials.