HMLP: High-performance Machine Learning Primitives
hmlp::gofmm::randomsplit< SPDMATRIX, N_SPLIT, T > Struct Template Reference

This the splitter used in the randomized tree. More...

#include <gofmm.hpp>

Inheritance diagram for hmlp::gofmm::randomsplit< SPDMATRIX, N_SPLIT, T >:
hmlp::mpigofmm::randomsplit< SPDMATRIX, N_SPLIT, T >

Public Member Functions

 randomsplit (SPDMATRIX &K)
 
vector< vector< size_t > > operator() (vector< size_t > &gids) const
 

Public Attributes

SPDMATRIX * Kptr = NULL
 
DistanceMetric metric = ANGLE_DISTANCE
 

Detailed Description

template<typename SPDMATRIX, int N_SPLIT, typename T>
struct hmlp::gofmm::randomsplit< SPDMATRIX, N_SPLIT, T >

This the splitter used in the randomized tree.

end struct centersplit

Member Function Documentation

template<typename SPDMATRIX , int N_SPLIT, typename T >
vector<vector<size_t> > hmlp::gofmm::randomsplit< SPDMATRIX, N_SPLIT, T >::operator() ( vector< size_t > &  gids) const
inline

overload with the operator

Randomly select two points p and q.

Compute all pairwise distances.

Member Data Documentation

template<typename SPDMATRIX , int N_SPLIT, typename T >
SPDMATRIX* hmlp::gofmm::randomsplit< SPDMATRIX, N_SPLIT, T >::Kptr = NULL

closure

template<typename SPDMATRIX , int N_SPLIT, typename T >
DistanceMetric hmlp::gofmm::randomsplit< SPDMATRIX, N_SPLIT, T >::metric = ANGLE_DISTANCE

(default) using angle distance from the Gram vector space


The documentation for this struct was generated from the following file: